peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/ensemble
/tests
/test_common.py
import numpy as np | |
import pytest | |
from sklearn.base import ClassifierMixin, clone, is_classifier | |
from sklearn.datasets import ( | |
load_diabetes, | |
load_iris, | |
make_classification, | |
make_regression, | |
) | |
from sklearn.ensemble import ( | |
RandomForestClassifier, | |
RandomForestRegressor, | |
StackingClassifier, | |
StackingRegressor, | |
VotingClassifier, | |
VotingRegressor, | |
) | |
from sklearn.impute import SimpleImputer | |
from sklearn.linear_model import LinearRegression, LogisticRegression | |
from sklearn.pipeline import make_pipeline | |
from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR | |
X, y = load_iris(return_X_y=True) | |
X_r, y_r = load_diabetes(return_X_y=True) | |
def test_ensemble_heterogeneous_estimators_behavior(X, y, estimator): | |
# check that the behavior of `estimators`, `estimators_`, | |
# `named_estimators`, `named_estimators_` is consistent across all | |
# ensemble classes and when using `set_params()`. | |
# before fit | |
assert "svm" in estimator.named_estimators | |
assert estimator.named_estimators.svm is estimator.estimators[1][1] | |
assert estimator.named_estimators.svm is estimator.named_estimators["svm"] | |
# check fitted attributes | |
estimator.fit(X, y) | |
assert len(estimator.named_estimators) == 3 | |
assert len(estimator.named_estimators_) == 3 | |
assert sorted(list(estimator.named_estimators_.keys())) == sorted( | |
["lr", "svm", "rf"] | |
) | |
# check that set_params() does not add a new attribute | |
estimator_new_params = clone(estimator) | |
svm_estimator = SVC() if is_classifier(estimator) else SVR() | |
estimator_new_params.set_params(svm=svm_estimator).fit(X, y) | |
assert not hasattr(estimator_new_params, "svm") | |
assert ( | |
estimator_new_params.named_estimators.lr.get_params() | |
== estimator.named_estimators.lr.get_params() | |
) | |
assert ( | |
estimator_new_params.named_estimators.rf.get_params() | |
== estimator.named_estimators.rf.get_params() | |
) | |
# check the behavior when setting an dropping an estimator | |
estimator_dropped = clone(estimator) | |
estimator_dropped.set_params(svm="drop") | |
estimator_dropped.fit(X, y) | |
assert len(estimator_dropped.named_estimators) == 3 | |
assert estimator_dropped.named_estimators.svm == "drop" | |
assert len(estimator_dropped.named_estimators_) == 3 | |
assert sorted(list(estimator_dropped.named_estimators_.keys())) == sorted( | |
["lr", "svm", "rf"] | |
) | |
for sub_est in estimator_dropped.named_estimators_: | |
# check that the correspondence is correct | |
assert not isinstance(sub_est, type(estimator.named_estimators.svm)) | |
# check that we can set the parameters of the underlying classifier | |
estimator.set_params(svm__C=10.0) | |
estimator.set_params(rf__max_depth=5) | |
assert ( | |
estimator.get_params()["svm__C"] | |
== estimator.get_params()["svm"].get_params()["C"] | |
) | |
assert ( | |
estimator.get_params()["rf__max_depth"] | |
== estimator.get_params()["rf"].get_params()["max_depth"] | |
) | |
def test_ensemble_heterogeneous_estimators_type(Ensemble): | |
# check that ensemble will fail during validation if the underlying | |
# estimators are not of the same type (i.e. classifier or regressor) | |
# StackingClassifier can have an underlying regresor so it's not checked | |
if issubclass(Ensemble, ClassifierMixin): | |
X, y = make_classification(n_samples=10) | |
estimators = [("lr", LinearRegression())] | |
ensemble_type = "classifier" | |
else: | |
X, y = make_regression(n_samples=10) | |
estimators = [("lr", LogisticRegression())] | |
ensemble_type = "regressor" | |
ensemble = Ensemble(estimators=estimators) | |
err_msg = "should be a {}".format(ensemble_type) | |
with pytest.raises(ValueError, match=err_msg): | |
ensemble.fit(X, y) | |
def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble): | |
# raise an error when the name contains dunder | |
if issubclass(Ensemble, ClassifierMixin): | |
estimators = [("lr__", LogisticRegression())] | |
else: | |
estimators = [("lr__", LinearRegression())] | |
ensemble = Ensemble(estimators=estimators) | |
err_msg = r"Estimator names must not contain __: got \['lr__'\]" | |
with pytest.raises(ValueError, match=err_msg): | |
ensemble.fit(X, y) | |
# raise an error when the name is not unique | |
if issubclass(Ensemble, ClassifierMixin): | |
estimators = [("lr", LogisticRegression()), ("lr", LogisticRegression())] | |
else: | |
estimators = [("lr", LinearRegression()), ("lr", LinearRegression())] | |
ensemble = Ensemble(estimators=estimators) | |
err_msg = r"Names provided are not unique: \['lr', 'lr'\]" | |
with pytest.raises(ValueError, match=err_msg): | |
ensemble.fit(X, y) | |
# raise an error when the name conflicts with the parameters | |
if issubclass(Ensemble, ClassifierMixin): | |
estimators = [("estimators", LogisticRegression())] | |
else: | |
estimators = [("estimators", LinearRegression())] | |
ensemble = Ensemble(estimators=estimators) | |
err_msg = "Estimator names conflict with constructor arguments" | |
with pytest.raises(ValueError, match=err_msg): | |
ensemble.fit(X, y) | |
def test_ensemble_heterogeneous_estimators_all_dropped(X, y, estimator): | |
# check that we raise a consistent error when all estimators are | |
# dropped | |
estimator.set_params(lr="drop") | |
with pytest.raises(ValueError, match="All estimators are dropped."): | |
estimator.fit(X, y) | |
# FIXME: we should move this test in `estimator_checks` once we are able | |
# to construct meta-estimator instances | |
def test_heterogeneous_ensemble_support_missing_values(Ensemble, Estimator, X, y): | |
# check that Voting and Stacking predictor delegate the missing values | |
# validation to the underlying estimator. | |
X = X.copy() | |
mask = np.random.choice([1, 0], X.shape, p=[0.1, 0.9]).astype(bool) | |
X[mask] = np.nan | |
pipe = make_pipeline(SimpleImputer(), Estimator()) | |
ensemble = Ensemble(estimators=[("pipe1", pipe), ("pipe2", pipe)]) | |
ensemble.fit(X, y).score(X, y) | |