peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_docstrings.py
import re | |
from inspect import signature | |
from typing import Optional | |
import pytest | |
# make it possible to discover experimental estimators when calling `all_estimators` | |
from sklearn.experimental import ( | |
enable_halving_search_cv, # noqa | |
enable_iterative_imputer, # noqa | |
) | |
from sklearn.utils.discovery import all_displays, all_estimators, all_functions | |
numpydoc_validation = pytest.importorskip("numpydoc.validate") | |
def get_all_methods(): | |
estimators = all_estimators() | |
displays = all_displays() | |
for name, Klass in estimators + displays: | |
if name.startswith("_"): | |
# skip private classes | |
continue | |
methods = [] | |
for name in dir(Klass): | |
if name.startswith("_"): | |
continue | |
method_obj = getattr(Klass, name) | |
if hasattr(method_obj, "__call__") or isinstance(method_obj, property): | |
methods.append(name) | |
methods.append(None) | |
for method in sorted(methods, key=str): | |
yield Klass, method | |
def get_all_functions_names(): | |
functions = all_functions() | |
for _, func in functions: | |
# exclude functions from utils.fixex since they come from external packages | |
if "utils.fixes" not in func.__module__: | |
yield f"{func.__module__}.{func.__name__}" | |
def filter_errors(errors, method, Klass=None): | |
""" | |
Ignore some errors based on the method type. | |
These rules are specific for scikit-learn.""" | |
for code, message in errors: | |
# We ignore following error code, | |
# - RT02: The first line of the Returns section | |
# should contain only the type, .. | |
# (as we may need refer to the name of the returned | |
# object) | |
# - GL01: Docstring text (summary) should start in the line | |
# immediately after the opening quotes (not in the same line, | |
# or leaving a blank line in between) | |
# - GL02: If there's a blank line, it should be before the | |
# first line of the Returns section, not after (it allows to have | |
# short docstrings for properties). | |
if code in ["RT02", "GL01", "GL02"]: | |
continue | |
# Ignore PR02: Unknown parameters for properties. We sometimes use | |
# properties for ducktyping, i.e. SGDClassifier.predict_proba | |
# Ignore GL08: Parsing of the method signature failed, possibly because this is | |
# a property. Properties are sometimes used for deprecated attributes and the | |
# attribute is already documented in the class docstring. | |
# | |
# All error codes: | |
# https://numpydoc.readthedocs.io/en/latest/validation.html#built-in-validation-checks | |
if code in ("PR02", "GL08") and Klass is not None and method is not None: | |
method_obj = getattr(Klass, method) | |
if isinstance(method_obj, property): | |
continue | |
# Following codes are only taken into account for the | |
# top level class docstrings: | |
# - ES01: No extended summary found | |
# - SA01: See Also section not found | |
# - EX01: No examples section found | |
if method is not None and code in ["EX01", "SA01", "ES01"]: | |
continue | |
yield code, message | |
def repr_errors(res, Klass=None, method: Optional[str] = None) -> str: | |
"""Pretty print original docstring and the obtained errors | |
Parameters | |
---------- | |
res : dict | |
result of numpydoc.validate.validate | |
Klass : {Estimator, Display, None} | |
estimator object or None | |
method : str | |
if estimator is not None, either the method name or None. | |
Returns | |
------- | |
str | |
String representation of the error. | |
""" | |
if method is None: | |
if hasattr(Klass, "__init__"): | |
method = "__init__" | |
elif Klass is None: | |
raise ValueError("At least one of Klass, method should be provided") | |
else: | |
raise NotImplementedError | |
if Klass is not None: | |
obj = getattr(Klass, method) | |
try: | |
obj_signature = str(signature(obj)) | |
except TypeError: | |
# In particular we can't parse the signature of properties | |
obj_signature = ( | |
"\nParsing of the method signature failed, " | |
"possibly because this is a property." | |
) | |
obj_name = Klass.__name__ + "." + method | |
else: | |
obj_signature = "" | |
obj_name = method | |
msg = "\n\n" + "\n\n".join( | |
[ | |
str(res["file"]), | |
obj_name + obj_signature, | |
res["docstring"], | |
"# Errors", | |
"\n".join( | |
" - {}: {}".format(code, message) for code, message in res["errors"] | |
), | |
] | |
) | |
return msg | |
def test_function_docstring(function_name, request): | |
"""Check function docstrings using numpydoc.""" | |
res = numpydoc_validation.validate(function_name) | |
res["errors"] = list(filter_errors(res["errors"], method="function")) | |
if res["errors"]: | |
msg = repr_errors(res, method=f"Tested function: {function_name}") | |
raise ValueError(msg) | |
def test_docstring(Klass, method, request): | |
base_import_path = Klass.__module__ | |
import_path = [base_import_path, Klass.__name__] | |
if method is not None: | |
import_path.append(method) | |
import_path = ".".join(import_path) | |
res = numpydoc_validation.validate(import_path) | |
res["errors"] = list(filter_errors(res["errors"], method, Klass=Klass)) | |
if res["errors"]: | |
msg = repr_errors(res, Klass, method) | |
raise ValueError(msg) | |
if __name__ == "__main__": | |
import argparse | |
import sys | |
parser = argparse.ArgumentParser(description="Validate docstring with numpydoc.") | |
parser.add_argument("import_path", help="Import path to validate") | |
args = parser.parse_args() | |
res = numpydoc_validation.validate(args.import_path) | |
import_path_sections = args.import_path.split(".") | |
# When applied to classes, detect class method. For functions | |
# method = None. | |
# TODO: this detection can be improved. Currently we assume that we have | |
# class # methods if the second path element before last is in camel case. | |
if len(import_path_sections) >= 2 and re.match( | |
r"(?:[A-Z][a-z]*)+", import_path_sections[-2] | |
): | |
method = import_path_sections[-1] | |
else: | |
method = None | |
res["errors"] = list(filter_errors(res["errors"], method)) | |
if res["errors"]: | |
msg = repr_errors(res, method=args.import_path) | |
print(msg) | |
sys.exit(1) | |
else: | |
print("All docstring checks passed for {}!".format(args.import_path)) | |