peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_random_projection.py
import functools | |
import warnings | |
from typing import Any, List | |
import numpy as np | |
import pytest | |
import scipy.sparse as sp | |
from sklearn.exceptions import DataDimensionalityWarning, NotFittedError | |
from sklearn.metrics import euclidean_distances | |
from sklearn.random_projection import ( | |
GaussianRandomProjection, | |
SparseRandomProjection, | |
_gaussian_random_matrix, | |
_sparse_random_matrix, | |
johnson_lindenstrauss_min_dim, | |
) | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_allclose_dense_sparse, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
from sklearn.utils.fixes import COO_CONTAINERS | |
all_sparse_random_matrix: List[Any] = [_sparse_random_matrix] | |
all_dense_random_matrix: List[Any] = [_gaussian_random_matrix] | |
all_random_matrix = all_sparse_random_matrix + all_dense_random_matrix | |
all_SparseRandomProjection: List[Any] = [SparseRandomProjection] | |
all_DenseRandomProjection: List[Any] = [GaussianRandomProjection] | |
all_RandomProjection = all_SparseRandomProjection + all_DenseRandomProjection | |
def make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=None, | |
sparse_format="csr", | |
): | |
"""Make some random data with uniformly located non zero entries with | |
Gaussian distributed values; `sparse_format` can be `"csr"` (default) or | |
`None` (in which case a dense array is returned). | |
""" | |
rng = np.random.RandomState(random_state) | |
data_coo = coo_container( | |
( | |
rng.randn(n_nonzeros), | |
( | |
rng.randint(n_samples, size=n_nonzeros), | |
rng.randint(n_features, size=n_nonzeros), | |
), | |
), | |
shape=(n_samples, n_features), | |
) | |
if sparse_format is not None: | |
return data_coo.asformat(sparse_format) | |
else: | |
return data_coo.toarray() | |
def densify(matrix): | |
if not sp.issparse(matrix): | |
return matrix | |
else: | |
return matrix.toarray() | |
n_samples, n_features = (10, 1000) | |
n_nonzeros = int(n_samples * n_features / 100.0) | |
############################################################################### | |
# test on JL lemma | |
############################################################################### | |
def test_invalid_jl_domain(n_samples, eps): | |
with pytest.raises(ValueError): | |
johnson_lindenstrauss_min_dim(n_samples, eps=eps) | |
def test_input_size_jl_min_dim(): | |
with pytest.raises(ValueError): | |
johnson_lindenstrauss_min_dim(3 * [100], eps=2 * [0.9]) | |
johnson_lindenstrauss_min_dim( | |
np.random.randint(1, 10, size=(10, 10)), eps=np.full((10, 10), 0.5) | |
) | |
############################################################################### | |
# tests random matrix generation | |
############################################################################### | |
def check_input_size_random_matrix(random_matrix): | |
inputs = [(0, 0), (-1, 1), (1, -1), (1, 0), (-1, 0)] | |
for n_components, n_features in inputs: | |
with pytest.raises(ValueError): | |
random_matrix(n_components, n_features) | |
def check_size_generated(random_matrix): | |
inputs = [(1, 5), (5, 1), (5, 5), (1, 1)] | |
for n_components, n_features in inputs: | |
assert random_matrix(n_components, n_features).shape == ( | |
n_components, | |
n_features, | |
) | |
def check_zero_mean_and_unit_norm(random_matrix): | |
# All random matrix should produce a transformation matrix | |
# with zero mean and unit norm for each columns | |
A = densify(random_matrix(10000, 1, random_state=0)) | |
assert_array_almost_equal(0, np.mean(A), 3) | |
assert_array_almost_equal(1.0, np.linalg.norm(A), 1) | |
def check_input_with_sparse_random_matrix(random_matrix): | |
n_components, n_features = 5, 10 | |
for density in [-1.0, 0.0, 1.1]: | |
with pytest.raises(ValueError): | |
random_matrix(n_components, n_features, density=density) | |
def test_basic_property_of_random_matrix(random_matrix): | |
# Check basic properties of random matrix generation | |
check_input_size_random_matrix(random_matrix) | |
check_size_generated(random_matrix) | |
check_zero_mean_and_unit_norm(random_matrix) | |
def test_basic_property_of_sparse_random_matrix(random_matrix): | |
check_input_with_sparse_random_matrix(random_matrix) | |
random_matrix_dense = functools.partial(random_matrix, density=1.0) | |
check_zero_mean_and_unit_norm(random_matrix_dense) | |
def test_gaussian_random_matrix(): | |
# Check some statical properties of Gaussian random matrix | |
# Check that the random matrix follow the proper distribution. | |
# Let's say that each element of a_{ij} of A is taken from | |
# a_ij ~ N(0.0, 1 / n_components). | |
# | |
n_components = 100 | |
n_features = 1000 | |
A = _gaussian_random_matrix(n_components, n_features, random_state=0) | |
assert_array_almost_equal(0.0, np.mean(A), 2) | |
assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) | |
def test_sparse_random_matrix(): | |
# Check some statical properties of sparse random matrix | |
n_components = 100 | |
n_features = 500 | |
for density in [0.3, 1.0]: | |
s = 1 / density | |
A = _sparse_random_matrix( | |
n_components, n_features, density=density, random_state=0 | |
) | |
A = densify(A) | |
# Check possible values | |
values = np.unique(A) | |
assert np.sqrt(s) / np.sqrt(n_components) in values | |
assert -np.sqrt(s) / np.sqrt(n_components) in values | |
if density == 1.0: | |
assert np.size(values) == 2 | |
else: | |
assert 0.0 in values | |
assert np.size(values) == 3 | |
# Check that the random matrix follow the proper distribution. | |
# Let's say that each element of a_{ij} of A is taken from | |
# | |
# - -sqrt(s) / sqrt(n_components) with probability 1 / 2s | |
# - 0 with probability 1 - 1 / s | |
# - +sqrt(s) / sqrt(n_components) with probability 1 / 2s | |
# | |
assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) | |
assert_almost_equal( | |
np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2 | |
) | |
assert_almost_equal( | |
np.mean(A == -np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2 | |
) | |
assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) | |
assert_almost_equal( | |
np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), | |
(1 - 1 / (2 * s)) * 1 / (2 * s), | |
decimal=2, | |
) | |
assert_almost_equal( | |
np.var(A == -np.sqrt(s) / np.sqrt(n_components), ddof=1), | |
(1 - 1 / (2 * s)) * 1 / (2 * s), | |
decimal=2, | |
) | |
############################################################################### | |
# tests on random projection transformer | |
############################################################################### | |
def test_random_projection_transformer_invalid_input(): | |
n_components = "auto" | |
fit_data = [[0, 1, 2]] | |
for RandomProjection in all_RandomProjection: | |
with pytest.raises(ValueError): | |
RandomProjection(n_components=n_components).fit(fit_data) | |
def test_try_to_transform_before_fit(coo_container, global_random_seed): | |
data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
for RandomProjection in all_RandomProjection: | |
with pytest.raises(NotFittedError): | |
RandomProjection(n_components="auto").transform(data) | |
def test_too_many_samples_to_find_a_safe_embedding(coo_container, global_random_seed): | |
data = make_sparse_random_data( | |
coo_container, | |
n_samples=1000, | |
n_features=100, | |
n_nonzeros=1000, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
for RandomProjection in all_RandomProjection: | |
rp = RandomProjection(n_components="auto", eps=0.1) | |
expected_msg = ( | |
"eps=0.100000 and n_samples=1000 lead to a target dimension" | |
" of 5920 which is larger than the original space with" | |
" n_features=100" | |
) | |
with pytest.raises(ValueError, match=expected_msg): | |
rp.fit(data) | |
def test_random_projection_embedding_quality(coo_container): | |
data = make_sparse_random_data( | |
coo_container, | |
n_samples=8, | |
n_features=5000, | |
n_nonzeros=15000, | |
random_state=0, | |
sparse_format=None, | |
) | |
eps = 0.2 | |
original_distances = euclidean_distances(data, squared=True) | |
original_distances = original_distances.ravel() | |
non_identical = original_distances != 0.0 | |
# remove 0 distances to avoid division by 0 | |
original_distances = original_distances[non_identical] | |
for RandomProjection in all_RandomProjection: | |
rp = RandomProjection(n_components="auto", eps=eps, random_state=0) | |
projected = rp.fit_transform(data) | |
projected_distances = euclidean_distances(projected, squared=True) | |
projected_distances = projected_distances.ravel() | |
# remove 0 distances to avoid division by 0 | |
projected_distances = projected_distances[non_identical] | |
distances_ratio = projected_distances / original_distances | |
# check that the automatically tuned values for the density respect the | |
# contract for eps: pairwise distances are preserved according to the | |
# Johnson-Lindenstrauss lemma | |
assert distances_ratio.max() < 1 + eps | |
assert 1 - eps < distances_ratio.min() | |
def test_SparseRandomProj_output_representation(coo_container): | |
dense_data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=0, | |
sparse_format=None, | |
) | |
sparse_data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=0, | |
sparse_format="csr", | |
) | |
for SparseRandomProj in all_SparseRandomProjection: | |
# when using sparse input, the projected data can be forced to be a | |
# dense numpy array | |
rp = SparseRandomProj(n_components=10, dense_output=True, random_state=0) | |
rp.fit(dense_data) | |
assert isinstance(rp.transform(dense_data), np.ndarray) | |
assert isinstance(rp.transform(sparse_data), np.ndarray) | |
# the output can be left to a sparse matrix instead | |
rp = SparseRandomProj(n_components=10, dense_output=False, random_state=0) | |
rp = rp.fit(dense_data) | |
# output for dense input will stay dense: | |
assert isinstance(rp.transform(dense_data), np.ndarray) | |
# output for sparse output will be sparse: | |
assert sp.issparse(rp.transform(sparse_data)) | |
def test_correct_RandomProjection_dimensions_embedding( | |
coo_container, global_random_seed | |
): | |
data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
for RandomProjection in all_RandomProjection: | |
rp = RandomProjection(n_components="auto", random_state=0, eps=0.5).fit(data) | |
# the number of components is adjusted from the shape of the training | |
# set | |
assert rp.n_components == "auto" | |
assert rp.n_components_ == 110 | |
if RandomProjection in all_SparseRandomProjection: | |
assert rp.density == "auto" | |
assert_almost_equal(rp.density_, 0.03, 2) | |
assert rp.components_.shape == (110, n_features) | |
projected_1 = rp.transform(data) | |
assert projected_1.shape == (n_samples, 110) | |
# once the RP is 'fitted' the projection is always the same | |
projected_2 = rp.transform(data) | |
assert_array_equal(projected_1, projected_2) | |
# fit transform with same random seed will lead to the same results | |
rp2 = RandomProjection(random_state=0, eps=0.5) | |
projected_3 = rp2.fit_transform(data) | |
assert_array_equal(projected_1, projected_3) | |
# Try to transform with an input X of size different from fitted. | |
with pytest.raises(ValueError): | |
rp.transform(data[:, 1:5]) | |
# it is also possible to fix the number of components and the density | |
# level | |
if RandomProjection in all_SparseRandomProjection: | |
rp = RandomProjection(n_components=100, density=0.001, random_state=0) | |
projected = rp.fit_transform(data) | |
assert projected.shape == (n_samples, 100) | |
assert rp.components_.shape == (100, n_features) | |
assert rp.components_.nnz < 115 # close to 1% density | |
assert 85 < rp.components_.nnz # close to 1% density | |
def test_warning_n_components_greater_than_n_features( | |
coo_container, global_random_seed | |
): | |
n_features = 20 | |
n_samples = 5 | |
n_nonzeros = int(n_features / 4) | |
data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
for RandomProjection in all_RandomProjection: | |
with pytest.warns(DataDimensionalityWarning): | |
RandomProjection(n_components=n_features + 1).fit(data) | |
def test_works_with_sparse_data(coo_container, global_random_seed): | |
n_features = 20 | |
n_samples = 5 | |
n_nonzeros = int(n_features / 4) | |
dense_data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
sparse_data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=global_random_seed, | |
sparse_format="csr", | |
) | |
for RandomProjection in all_RandomProjection: | |
rp_dense = RandomProjection(n_components=3, random_state=1).fit(dense_data) | |
rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sparse_data) | |
assert_array_almost_equal( | |
densify(rp_dense.components_), densify(rp_sparse.components_) | |
) | |
def test_johnson_lindenstrauss_min_dim(): | |
"""Test Johnson-Lindenstrauss for small eps. | |
Regression test for #17111: before #19374, 32-bit systems would fail. | |
""" | |
assert johnson_lindenstrauss_min_dim(100, eps=1e-5) == 368416070986 | |
def test_random_projection_feature_names_out( | |
coo_container, random_projection_cls, global_random_seed | |
): | |
data = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
random_projection = random_projection_cls(n_components=2) | |
random_projection.fit(data) | |
names_out = random_projection.get_feature_names_out() | |
class_name_lower = random_projection_cls.__name__.lower() | |
expected_names_out = np.array( | |
[f"{class_name_lower}{i}" for i in range(random_projection.n_components_)], | |
dtype=object, | |
) | |
assert_array_equal(names_out, expected_names_out) | |
def test_inverse_transform( | |
coo_container, | |
n_samples, | |
n_features, | |
random_projection_cls, | |
compute_inverse_components, | |
global_random_seed, | |
): | |
n_components = 10 | |
random_projection = random_projection_cls( | |
n_components=n_components, | |
compute_inverse_components=compute_inverse_components, | |
random_state=global_random_seed, | |
) | |
X_dense = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros=n_samples * n_features // 100 + 1, | |
random_state=global_random_seed, | |
sparse_format=None, | |
) | |
X_csr = make_sparse_random_data( | |
coo_container, | |
n_samples, | |
n_features, | |
n_nonzeros=n_samples * n_features // 100 + 1, | |
random_state=global_random_seed, | |
sparse_format="csr", | |
) | |
for X in [X_dense, X_csr]: | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", | |
message=( | |
"The number of components is higher than the number of features" | |
), | |
category=DataDimensionalityWarning, | |
) | |
projected = random_projection.fit_transform(X) | |
if compute_inverse_components: | |
assert hasattr(random_projection, "inverse_components_") | |
inv_components = random_projection.inverse_components_ | |
assert inv_components.shape == (n_features, n_components) | |
projected_back = random_projection.inverse_transform(projected) | |
assert projected_back.shape == X.shape | |
projected_again = random_projection.transform(projected_back) | |
if hasattr(projected, "toarray"): | |
projected = projected.toarray() | |
assert_allclose(projected, projected_again, rtol=1e-7, atol=1e-10) | |
def test_random_projection_dtype_match( | |
random_projection_cls, input_dtype, expected_dtype | |
): | |
# Verify output matrix dtype | |
rng = np.random.RandomState(42) | |
X = rng.rand(25, 3000) | |
rp = random_projection_cls(random_state=0) | |
transformed = rp.fit_transform(X.astype(input_dtype)) | |
assert rp.components_.dtype == expected_dtype | |
assert transformed.dtype == expected_dtype | |
def test_random_projection_numerical_consistency(random_projection_cls): | |
# Verify numerical consistency among np.float32 and np.float64 | |
atol = 1e-5 | |
rng = np.random.RandomState(42) | |
X = rng.rand(25, 3000) | |
rp_32 = random_projection_cls(random_state=0) | |
rp_64 = random_projection_cls(random_state=0) | |
projection_32 = rp_32.fit_transform(X.astype(np.float32)) | |
projection_64 = rp_64.fit_transform(X.astype(np.float64)) | |
assert_allclose(projection_64, projection_32, atol=atol) | |
assert_allclose_dense_sparse(rp_32.components_, rp_64.components_) | |