peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/_param_validation.py
import functools | |
import math | |
import operator | |
import re | |
from abc import ABC, abstractmethod | |
from collections.abc import Iterable | |
from inspect import signature | |
from numbers import Integral, Real | |
import numpy as np | |
from scipy.sparse import csr_matrix, issparse | |
from .._config import config_context, get_config | |
from .validation import _is_arraylike_not_scalar | |
class InvalidParameterError(ValueError, TypeError): | |
"""Custom exception to be raised when the parameter of a class/method/function | |
does not have a valid type or value. | |
""" | |
# Inherits from ValueError and TypeError to keep backward compatibility. | |
def validate_parameter_constraints(parameter_constraints, params, caller_name): | |
"""Validate types and values of given parameters. | |
Parameters | |
---------- | |
parameter_constraints : dict or {"no_validation"} | |
If "no_validation", validation is skipped for this parameter. | |
If a dict, it must be a dictionary `param_name: list of constraints`. | |
A parameter is valid if it satisfies one of the constraints from the list. | |
Constraints can be: | |
- an Interval object, representing a continuous or discrete range of numbers | |
- the string "array-like" | |
- the string "sparse matrix" | |
- the string "random_state" | |
- callable | |
- None, meaning that None is a valid value for the parameter | |
- any type, meaning that any instance of this type is valid | |
- an Options object, representing a set of elements of a given type | |
- a StrOptions object, representing a set of strings | |
- the string "boolean" | |
- the string "verbose" | |
- the string "cv_object" | |
- the string "nan" | |
- a MissingValues object representing markers for missing values | |
- a HasMethods object, representing method(s) an object must have | |
- a Hidden object, representing a constraint not meant to be exposed to the user | |
params : dict | |
A dictionary `param_name: param_value`. The parameters to validate against the | |
constraints. | |
caller_name : str | |
The name of the estimator or function or method that called this function. | |
""" | |
for param_name, param_val in params.items(): | |
# We allow parameters to not have a constraint so that third party estimators | |
# can inherit from sklearn estimators without having to necessarily use the | |
# validation tools. | |
if param_name not in parameter_constraints: | |
continue | |
constraints = parameter_constraints[param_name] | |
if constraints == "no_validation": | |
continue | |
constraints = [make_constraint(constraint) for constraint in constraints] | |
for constraint in constraints: | |
if constraint.is_satisfied_by(param_val): | |
# this constraint is satisfied, no need to check further. | |
break | |
else: | |
# No constraint is satisfied, raise with an informative message. | |
# Ignore constraints that we don't want to expose in the error message, | |
# i.e. options that are for internal purpose or not officially supported. | |
constraints = [ | |
constraint for constraint in constraints if not constraint.hidden | |
] | |
if len(constraints) == 1: | |
constraints_str = f"{constraints[0]}" | |
else: | |
constraints_str = ( | |
f"{', '.join([str(c) for c in constraints[:-1]])} or" | |
f" {constraints[-1]}" | |
) | |
raise InvalidParameterError( | |
f"The {param_name!r} parameter of {caller_name} must be" | |
f" {constraints_str}. Got {param_val!r} instead." | |
) | |
def make_constraint(constraint): | |
"""Convert the constraint into the appropriate Constraint object. | |
Parameters | |
---------- | |
constraint : object | |
The constraint to convert. | |
Returns | |
------- | |
constraint : instance of _Constraint | |
The converted constraint. | |
""" | |
if isinstance(constraint, str) and constraint == "array-like": | |
return _ArrayLikes() | |
if isinstance(constraint, str) and constraint == "sparse matrix": | |
return _SparseMatrices() | |
if isinstance(constraint, str) and constraint == "random_state": | |
return _RandomStates() | |
if constraint is callable: | |
return _Callables() | |
if constraint is None: | |
return _NoneConstraint() | |
if isinstance(constraint, type): | |
return _InstancesOf(constraint) | |
if isinstance( | |
constraint, (Interval, StrOptions, Options, HasMethods, MissingValues) | |
): | |
return constraint | |
if isinstance(constraint, str) and constraint == "boolean": | |
return _Booleans() | |
if isinstance(constraint, str) and constraint == "verbose": | |
return _VerboseHelper() | |
if isinstance(constraint, str) and constraint == "cv_object": | |
return _CVObjects() | |
if isinstance(constraint, Hidden): | |
constraint = make_constraint(constraint.constraint) | |
constraint.hidden = True | |
return constraint | |
if isinstance(constraint, str) and constraint == "nan": | |
return _NanConstraint() | |
raise ValueError(f"Unknown constraint type: {constraint}") | |
def validate_params(parameter_constraints, *, prefer_skip_nested_validation): | |
"""Decorator to validate types and values of functions and methods. | |
Parameters | |
---------- | |
parameter_constraints : dict | |
A dictionary `param_name: list of constraints`. See the docstring of | |
`validate_parameter_constraints` for a description of the accepted constraints. | |
Note that the *args and **kwargs parameters are not validated and must not be | |
present in the parameter_constraints dictionary. | |
prefer_skip_nested_validation : bool | |
If True, the validation of parameters of inner estimators or functions | |
called by the decorated function will be skipped. | |
This is useful to avoid validating many times the parameters passed by the | |
user from the public facing API. It's also useful to avoid validating | |
parameters that we pass internally to inner functions that are guaranteed to | |
be valid by the test suite. | |
It should be set to True for most functions, except for those that receive | |
non-validated objects as parameters or that are just wrappers around classes | |
because they only perform a partial validation. | |
Returns | |
------- | |
decorated_function : function or method | |
The decorated function. | |
""" | |
def decorator(func): | |
# The dict of parameter constraints is set as an attribute of the function | |
# to make it possible to dynamically introspect the constraints for | |
# automatic testing. | |
setattr(func, "_skl_parameter_constraints", parameter_constraints) | |
def wrapper(*args, **kwargs): | |
global_skip_validation = get_config()["skip_parameter_validation"] | |
if global_skip_validation: | |
return func(*args, **kwargs) | |
func_sig = signature(func) | |
# Map *args/**kwargs to the function signature | |
params = func_sig.bind(*args, **kwargs) | |
params.apply_defaults() | |
# ignore self/cls and positional/keyword markers | |
to_ignore = [ | |
p.name | |
for p in func_sig.parameters.values() | |
if p.kind in (p.VAR_POSITIONAL, p.VAR_KEYWORD) | |
] | |
to_ignore += ["self", "cls"] | |
params = {k: v for k, v in params.arguments.items() if k not in to_ignore} | |
validate_parameter_constraints( | |
parameter_constraints, params, caller_name=func.__qualname__ | |
) | |
try: | |
with config_context( | |
skip_parameter_validation=( | |
prefer_skip_nested_validation or global_skip_validation | |
) | |
): | |
return func(*args, **kwargs) | |
except InvalidParameterError as e: | |
# When the function is just a wrapper around an estimator, we allow | |
# the function to delegate validation to the estimator, but we replace | |
# the name of the estimator by the name of the function in the error | |
# message to avoid confusion. | |
msg = re.sub( | |
r"parameter of \w+ must be", | |
f"parameter of {func.__qualname__} must be", | |
str(e), | |
) | |
raise InvalidParameterError(msg) from e | |
return wrapper | |
return decorator | |
class RealNotInt(Real): | |
"""A type that represents reals that are not instances of int. | |
Behaves like float, but also works with values extracted from numpy arrays. | |
isintance(1, RealNotInt) -> False | |
isinstance(1.0, RealNotInt) -> True | |
""" | |
RealNotInt.register(float) | |
def _type_name(t): | |
"""Convert type into human readable string.""" | |
module = t.__module__ | |
qualname = t.__qualname__ | |
if module == "builtins": | |
return qualname | |
elif t == Real: | |
return "float" | |
elif t == Integral: | |
return "int" | |
return f"{module}.{qualname}" | |
class _Constraint(ABC): | |
"""Base class for the constraint objects.""" | |
def __init__(self): | |
self.hidden = False | |
def is_satisfied_by(self, val): | |
"""Whether or not a value satisfies the constraint. | |
Parameters | |
---------- | |
val : object | |
The value to check. | |
Returns | |
------- | |
is_satisfied : bool | |
Whether or not the constraint is satisfied by this value. | |
""" | |
def __str__(self): | |
"""A human readable representational string of the constraint.""" | |
class _InstancesOf(_Constraint): | |
"""Constraint representing instances of a given type. | |
Parameters | |
---------- | |
type : type | |
The valid type. | |
""" | |
def __init__(self, type): | |
super().__init__() | |
self.type = type | |
def is_satisfied_by(self, val): | |
return isinstance(val, self.type) | |
def __str__(self): | |
return f"an instance of {_type_name(self.type)!r}" | |
class _NoneConstraint(_Constraint): | |
"""Constraint representing the None singleton.""" | |
def is_satisfied_by(self, val): | |
return val is None | |
def __str__(self): | |
return "None" | |
class _NanConstraint(_Constraint): | |
"""Constraint representing the indicator `np.nan`.""" | |
def is_satisfied_by(self, val): | |
return ( | |
not isinstance(val, Integral) and isinstance(val, Real) and math.isnan(val) | |
) | |
def __str__(self): | |
return "numpy.nan" | |
class _PandasNAConstraint(_Constraint): | |
"""Constraint representing the indicator `pd.NA`.""" | |
def is_satisfied_by(self, val): | |
try: | |
import pandas as pd | |
return isinstance(val, type(pd.NA)) and pd.isna(val) | |
except ImportError: | |
return False | |
def __str__(self): | |
return "pandas.NA" | |
class Options(_Constraint): | |
"""Constraint representing a finite set of instances of a given type. | |
Parameters | |
---------- | |
type : type | |
options : set | |
The set of valid scalars. | |
deprecated : set or None, default=None | |
A subset of the `options` to mark as deprecated in the string | |
representation of the constraint. | |
""" | |
def __init__(self, type, options, *, deprecated=None): | |
super().__init__() | |
self.type = type | |
self.options = options | |
self.deprecated = deprecated or set() | |
if self.deprecated - self.options: | |
raise ValueError("The deprecated options must be a subset of the options.") | |
def is_satisfied_by(self, val): | |
return isinstance(val, self.type) and val in self.options | |
def _mark_if_deprecated(self, option): | |
"""Add a deprecated mark to an option if needed.""" | |
option_str = f"{option!r}" | |
if option in self.deprecated: | |
option_str = f"{option_str} (deprecated)" | |
return option_str | |
def __str__(self): | |
options_str = ( | |
f"{', '.join([self._mark_if_deprecated(o) for o in self.options])}" | |
) | |
return f"a {_type_name(self.type)} among {{{options_str}}}" | |
class StrOptions(Options): | |
"""Constraint representing a finite set of strings. | |
Parameters | |
---------- | |
options : set of str | |
The set of valid strings. | |
deprecated : set of str or None, default=None | |
A subset of the `options` to mark as deprecated in the string | |
representation of the constraint. | |
""" | |
def __init__(self, options, *, deprecated=None): | |
super().__init__(type=str, options=options, deprecated=deprecated) | |
class Interval(_Constraint): | |
"""Constraint representing a typed interval. | |
Parameters | |
---------- | |
type : {numbers.Integral, numbers.Real, RealNotInt} | |
The set of numbers in which to set the interval. | |
If RealNotInt, only reals that don't have the integer type | |
are allowed. For example 1.0 is allowed but 1 is not. | |
left : float or int or None | |
The left bound of the interval. None means left bound is -∞. | |
right : float, int or None | |
The right bound of the interval. None means right bound is +∞. | |
closed : {"left", "right", "both", "neither"} | |
Whether the interval is open or closed. Possible choices are: | |
- `"left"`: the interval is closed on the left and open on the right. | |
It is equivalent to the interval `[ left, right )`. | |
- `"right"`: the interval is closed on the right and open on the left. | |
It is equivalent to the interval `( left, right ]`. | |
- `"both"`: the interval is closed. | |
It is equivalent to the interval `[ left, right ]`. | |
- `"neither"`: the interval is open. | |
It is equivalent to the interval `( left, right )`. | |
Notes | |
----- | |
Setting a bound to `None` and setting the interval closed is valid. For instance, | |
strictly speaking, `Interval(Real, 0, None, closed="both")` corresponds to | |
`[0, +∞) U {+∞}`. | |
""" | |
def __init__(self, type, left, right, *, closed): | |
super().__init__() | |
self.type = type | |
self.left = left | |
self.right = right | |
self.closed = closed | |
self._check_params() | |
def _check_params(self): | |
if self.type not in (Integral, Real, RealNotInt): | |
raise ValueError( | |
"type must be either numbers.Integral, numbers.Real or RealNotInt." | |
f" Got {self.type} instead." | |
) | |
if self.closed not in ("left", "right", "both", "neither"): | |
raise ValueError( | |
"closed must be either 'left', 'right', 'both' or 'neither'. " | |
f"Got {self.closed} instead." | |
) | |
if self.type is Integral: | |
suffix = "for an interval over the integers." | |
if self.left is not None and not isinstance(self.left, Integral): | |
raise TypeError(f"Expecting left to be an int {suffix}") | |
if self.right is not None and not isinstance(self.right, Integral): | |
raise TypeError(f"Expecting right to be an int {suffix}") | |
if self.left is None and self.closed in ("left", "both"): | |
raise ValueError( | |
f"left can't be None when closed == {self.closed} {suffix}" | |
) | |
if self.right is None and self.closed in ("right", "both"): | |
raise ValueError( | |
f"right can't be None when closed == {self.closed} {suffix}" | |
) | |
else: | |
if self.left is not None and not isinstance(self.left, Real): | |
raise TypeError("Expecting left to be a real number.") | |
if self.right is not None and not isinstance(self.right, Real): | |
raise TypeError("Expecting right to be a real number.") | |
if self.right is not None and self.left is not None and self.right <= self.left: | |
raise ValueError( | |
f"right can't be less than left. Got left={self.left} and " | |
f"right={self.right}" | |
) | |
def __contains__(self, val): | |
if not isinstance(val, Integral) and np.isnan(val): | |
return False | |
left_cmp = operator.lt if self.closed in ("left", "both") else operator.le | |
right_cmp = operator.gt if self.closed in ("right", "both") else operator.ge | |
left = -np.inf if self.left is None else self.left | |
right = np.inf if self.right is None else self.right | |
if left_cmp(val, left): | |
return False | |
if right_cmp(val, right): | |
return False | |
return True | |
def is_satisfied_by(self, val): | |
if not isinstance(val, self.type): | |
return False | |
return val in self | |
def __str__(self): | |
type_str = "an int" if self.type is Integral else "a float" | |
left_bracket = "[" if self.closed in ("left", "both") else "(" | |
left_bound = "-inf" if self.left is None else self.left | |
right_bound = "inf" if self.right is None else self.right | |
right_bracket = "]" if self.closed in ("right", "both") else ")" | |
# better repr if the bounds were given as integers | |
if not self.type == Integral and isinstance(self.left, Real): | |
left_bound = float(left_bound) | |
if not self.type == Integral and isinstance(self.right, Real): | |
right_bound = float(right_bound) | |
return ( | |
f"{type_str} in the range " | |
f"{left_bracket}{left_bound}, {right_bound}{right_bracket}" | |
) | |
class _ArrayLikes(_Constraint): | |
"""Constraint representing array-likes""" | |
def is_satisfied_by(self, val): | |
return _is_arraylike_not_scalar(val) | |
def __str__(self): | |
return "an array-like" | |
class _SparseMatrices(_Constraint): | |
"""Constraint representing sparse matrices.""" | |
def is_satisfied_by(self, val): | |
return issparse(val) | |
def __str__(self): | |
return "a sparse matrix" | |
class _Callables(_Constraint): | |
"""Constraint representing callables.""" | |
def is_satisfied_by(self, val): | |
return callable(val) | |
def __str__(self): | |
return "a callable" | |
class _RandomStates(_Constraint): | |
"""Constraint representing random states. | |
Convenience class for | |
[Interval(Integral, 0, 2**32 - 1, closed="both"), np.random.RandomState, None] | |
""" | |
def __init__(self): | |
super().__init__() | |
self._constraints = [ | |
Interval(Integral, 0, 2**32 - 1, closed="both"), | |
_InstancesOf(np.random.RandomState), | |
_NoneConstraint(), | |
] | |
def is_satisfied_by(self, val): | |
return any(c.is_satisfied_by(val) for c in self._constraints) | |
def __str__(self): | |
return ( | |
f"{', '.join([str(c) for c in self._constraints[:-1]])} or" | |
f" {self._constraints[-1]}" | |
) | |
class _Booleans(_Constraint): | |
"""Constraint representing boolean likes. | |
Convenience class for | |
[bool, np.bool_, Integral (deprecated)] | |
""" | |
def __init__(self): | |
super().__init__() | |
self._constraints = [ | |
_InstancesOf(bool), | |
_InstancesOf(np.bool_), | |
] | |
def is_satisfied_by(self, val): | |
return any(c.is_satisfied_by(val) for c in self._constraints) | |
def __str__(self): | |
return ( | |
f"{', '.join([str(c) for c in self._constraints[:-1]])} or" | |
f" {self._constraints[-1]}" | |
) | |
class _VerboseHelper(_Constraint): | |
"""Helper constraint for the verbose parameter. | |
Convenience class for | |
[Interval(Integral, 0, None, closed="left"), bool, numpy.bool_] | |
""" | |
def __init__(self): | |
super().__init__() | |
self._constraints = [ | |
Interval(Integral, 0, None, closed="left"), | |
_InstancesOf(bool), | |
_InstancesOf(np.bool_), | |
] | |
def is_satisfied_by(self, val): | |
return any(c.is_satisfied_by(val) for c in self._constraints) | |
def __str__(self): | |
return ( | |
f"{', '.join([str(c) for c in self._constraints[:-1]])} or" | |
f" {self._constraints[-1]}" | |
) | |
class MissingValues(_Constraint): | |
"""Helper constraint for the `missing_values` parameters. | |
Convenience for | |
[ | |
Integral, | |
Interval(Real, None, None, closed="both"), | |
str, # when numeric_only is False | |
None, # when numeric_only is False | |
_NanConstraint(), | |
_PandasNAConstraint(), | |
] | |
Parameters | |
---------- | |
numeric_only : bool, default=False | |
Whether to consider only numeric missing value markers. | |
""" | |
def __init__(self, numeric_only=False): | |
super().__init__() | |
self.numeric_only = numeric_only | |
self._constraints = [ | |
_InstancesOf(Integral), | |
# we use an interval of Real to ignore np.nan that has its own constraint | |
Interval(Real, None, None, closed="both"), | |
_NanConstraint(), | |
_PandasNAConstraint(), | |
] | |
if not self.numeric_only: | |
self._constraints.extend([_InstancesOf(str), _NoneConstraint()]) | |
def is_satisfied_by(self, val): | |
return any(c.is_satisfied_by(val) for c in self._constraints) | |
def __str__(self): | |
return ( | |
f"{', '.join([str(c) for c in self._constraints[:-1]])} or" | |
f" {self._constraints[-1]}" | |
) | |
class HasMethods(_Constraint): | |
"""Constraint representing objects that expose specific methods. | |
It is useful for parameters following a protocol and where we don't want to impose | |
an affiliation to a specific module or class. | |
Parameters | |
---------- | |
methods : str or list of str | |
The method(s) that the object is expected to expose. | |
""" | |
def __init__(self, methods): | |
super().__init__() | |
if isinstance(methods, str): | |
methods = [methods] | |
self.methods = methods | |
def is_satisfied_by(self, val): | |
return all(callable(getattr(val, method, None)) for method in self.methods) | |
def __str__(self): | |
if len(self.methods) == 1: | |
methods = f"{self.methods[0]!r}" | |
else: | |
methods = ( | |
f"{', '.join([repr(m) for m in self.methods[:-1]])} and" | |
f" {self.methods[-1]!r}" | |
) | |
return f"an object implementing {methods}" | |
class _IterablesNotString(_Constraint): | |
"""Constraint representing iterables that are not strings.""" | |
def is_satisfied_by(self, val): | |
return isinstance(val, Iterable) and not isinstance(val, str) | |
def __str__(self): | |
return "an iterable" | |
class _CVObjects(_Constraint): | |
"""Constraint representing cv objects. | |
Convenient class for | |
[ | |
Interval(Integral, 2, None, closed="left"), | |
HasMethods(["split", "get_n_splits"]), | |
_IterablesNotString(), | |
None, | |
] | |
""" | |
def __init__(self): | |
super().__init__() | |
self._constraints = [ | |
Interval(Integral, 2, None, closed="left"), | |
HasMethods(["split", "get_n_splits"]), | |
_IterablesNotString(), | |
_NoneConstraint(), | |
] | |
def is_satisfied_by(self, val): | |
return any(c.is_satisfied_by(val) for c in self._constraints) | |
def __str__(self): | |
return ( | |
f"{', '.join([str(c) for c in self._constraints[:-1]])} or" | |
f" {self._constraints[-1]}" | |
) | |
class Hidden: | |
"""Class encapsulating a constraint not meant to be exposed to the user. | |
Parameters | |
---------- | |
constraint : str or _Constraint instance | |
The constraint to be used internally. | |
""" | |
def __init__(self, constraint): | |
self.constraint = constraint | |
def generate_invalid_param_val(constraint): | |
"""Return a value that does not satisfy the constraint. | |
Raises a NotImplementedError if there exists no invalid value for this constraint. | |
This is only useful for testing purpose. | |
Parameters | |
---------- | |
constraint : _Constraint instance | |
The constraint to generate a value for. | |
Returns | |
------- | |
val : object | |
A value that does not satisfy the constraint. | |
""" | |
if isinstance(constraint, StrOptions): | |
return f"not {' or '.join(constraint.options)}" | |
if isinstance(constraint, MissingValues): | |
return np.array([1, 2, 3]) | |
if isinstance(constraint, _VerboseHelper): | |
return -1 | |
if isinstance(constraint, HasMethods): | |
return type("HasNotMethods", (), {})() | |
if isinstance(constraint, _IterablesNotString): | |
return "a string" | |
if isinstance(constraint, _CVObjects): | |
return "not a cv object" | |
if isinstance(constraint, Interval) and constraint.type is Integral: | |
if constraint.left is not None: | |
return constraint.left - 1 | |
if constraint.right is not None: | |
return constraint.right + 1 | |
# There's no integer outside (-inf, +inf) | |
raise NotImplementedError | |
if isinstance(constraint, Interval) and constraint.type in (Real, RealNotInt): | |
if constraint.left is not None: | |
return constraint.left - 1e-6 | |
if constraint.right is not None: | |
return constraint.right + 1e-6 | |
# bounds are -inf, +inf | |
if constraint.closed in ("right", "neither"): | |
return -np.inf | |
if constraint.closed in ("left", "neither"): | |
return np.inf | |
# interval is [-inf, +inf] | |
return np.nan | |
raise NotImplementedError | |
def generate_valid_param(constraint): | |
"""Return a value that does satisfy a constraint. | |
This is only useful for testing purpose. | |
Parameters | |
---------- | |
constraint : Constraint instance | |
The constraint to generate a value for. | |
Returns | |
------- | |
val : object | |
A value that does satisfy the constraint. | |
""" | |
if isinstance(constraint, _ArrayLikes): | |
return np.array([1, 2, 3]) | |
if isinstance(constraint, _SparseMatrices): | |
return csr_matrix([[0, 1], [1, 0]]) | |
if isinstance(constraint, _RandomStates): | |
return np.random.RandomState(42) | |
if isinstance(constraint, _Callables): | |
return lambda x: x | |
if isinstance(constraint, _NoneConstraint): | |
return None | |
if isinstance(constraint, _InstancesOf): | |
if constraint.type is np.ndarray: | |
# special case for ndarray since it can't be instantiated without arguments | |
return np.array([1, 2, 3]) | |
if constraint.type in (Integral, Real): | |
# special case for Integral and Real since they are abstract classes | |
return 1 | |
return constraint.type() | |
if isinstance(constraint, _Booleans): | |
return True | |
if isinstance(constraint, _VerboseHelper): | |
return 1 | |
if isinstance(constraint, MissingValues) and constraint.numeric_only: | |
return np.nan | |
if isinstance(constraint, MissingValues) and not constraint.numeric_only: | |
return "missing" | |
if isinstance(constraint, HasMethods): | |
return type( | |
"ValidHasMethods", (), {m: lambda self: None for m in constraint.methods} | |
)() | |
if isinstance(constraint, _IterablesNotString): | |
return [1, 2, 3] | |
if isinstance(constraint, _CVObjects): | |
return 5 | |
if isinstance(constraint, Options): # includes StrOptions | |
for option in constraint.options: | |
return option | |
if isinstance(constraint, Interval): | |
interval = constraint | |
if interval.left is None and interval.right is None: | |
return 0 | |
elif interval.left is None: | |
return interval.right - 1 | |
elif interval.right is None: | |
return interval.left + 1 | |
else: | |
if interval.type is Real: | |
return (interval.left + interval.right) / 2 | |
else: | |
return interval.left + 1 | |
raise ValueError(f"Unknown constraint type: {constraint}") | |