peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/moe
/layer.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| from typing import Optional, Tuple | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from deepspeed.utils import groups, log_dist | |
| from .experts import Experts | |
| from .sharded_moe import MOELayer, TopKGate | |
| class MoE(nn.Module): | |
| """Initialize an MoE layer. | |
| Arguments: | |
| hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension. | |
| expert (nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear). | |
| num_experts (int, optional): default=1, the total number of experts per layer. | |
| ep_size (int, optional): default=1, number of ranks in the expert parallel world or group. | |
| k (int, optional): default=1, top-k gating value, only supports k=1 or k=2. | |
| capacity_factor (float, optional): default=1.0, the capacity of the expert at training time. | |
| eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time. | |
| min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor. | |
| use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer. | |
| noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample' or 'None'. | |
| drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity). | |
| use_rts (bool, optional): default=True, whether to use Random Token Selection. | |
| use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed). | |
| enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts | |
| top2_2nd_expert_sampling (bool, optional): default=True, whether to perform sampling for 2nd expert | |
| """ | |
| def __init__(self, | |
| hidden_size: int, | |
| expert: nn.Module, | |
| num_experts: int = 1, | |
| ep_size: int = 1, | |
| k: int = 1, | |
| capacity_factor: float = 1.0, | |
| eval_capacity_factor: float = 1.0, | |
| min_capacity: int = 4, | |
| use_residual: bool = False, | |
| noisy_gate_policy: Optional[str] = None, | |
| drop_tokens: bool = True, | |
| use_rts: bool = True, | |
| use_tutel: bool = False, | |
| enable_expert_tensor_parallelism: bool = False, | |
| top2_2nd_expert_sampling: bool = True) -> None: | |
| super(MoE, self).__init__() | |
| self.use_residual = use_residual | |
| self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism | |
| assert num_experts % ep_size == 0, f"Number of experts ({num_experts}) should be divisible by expert parallel size ({ep_size})" | |
| self.ep_size = ep_size | |
| self.expert_group_name = f"ep_size_{self.ep_size}" | |
| self.num_experts = num_experts | |
| self.num_local_experts = num_experts // self.ep_size | |
| log_dist( | |
| f'Creating MoE layer with num_experts: {num_experts} | num_local_experts: {self.num_local_experts} | expert_parallel_size: {self.ep_size}', | |
| [0]) | |
| assert noisy_gate_policy is None or noisy_gate_policy in ['None', 'Jitter', 'RSample'], \ | |
| 'Unsupported noisy_gate_policy: ' + noisy_gate_policy | |
| experts = Experts(expert, self.num_local_experts, self.expert_group_name) | |
| self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor, | |
| min_capacity, noisy_gate_policy, drop_tokens, use_rts, None, | |
| top2_2nd_expert_sampling), | |
| experts, | |
| self.expert_group_name, | |
| self.ep_size, | |
| self.num_local_experts, | |
| use_tutel=use_tutel) | |
| if self.use_residual: | |
| self.mlp = expert | |
| # coefficient is used for weighted sum of the output of expert and mlp | |
| self.coefficient = nn.Linear(hidden_size, 2) | |
| def set_deepspeed_parallelism(self, use_data_before_expert_parallel_: bool = False) -> None: | |
| self._create_process_groups(use_data_before_expert_parallel_=use_data_before_expert_parallel_) | |
| def _create_process_groups(self, use_data_before_expert_parallel_: bool = False) -> None: | |
| # Create process group for a layer if needed | |
| if self.expert_group_name not in groups._get_expert_parallel_group_dict(): | |
| print(f"No existing process group found, creating a new group named: {self.expert_group_name}") | |
| if (groups.mpu is None) or (not self.enable_expert_tensor_parallelism): | |
| # Condition 1 - no groups.mpu means no tensor parallelism | |
| # Condition 2 - disabling expert tensor parallelism on purpose | |
| groups._create_expert_and_data_parallel( | |
| self.ep_size, use_data_before_expert_parallel_=use_data_before_expert_parallel_) | |
| else: | |
| # expert tensor parallelism is enabled | |
| groups._create_expert_data_and_model_parallel( | |
| self.ep_size, mpu=groups.mpu, use_data_before_expert_parallel_=use_data_before_expert_parallel_) | |
| # Set the group handle for the MOELayer (deepspeed_moe) object | |
| self.deepspeed_moe._set_ep_group(groups._get_expert_parallel_group(self.expert_group_name)) | |
| def forward(self, | |
| hidden_states: torch.Tensor, | |
| used_token: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ MoE forward | |
| Arguments: | |
| hidden_states (Tensor): input to the layer | |
| used_token (Tensor, optional): default: None, mask only used tokens | |
| Returns: | |
| A tuple including output, gate loss, and expert count. | |
| * output (Tensor): output of the model | |
| * l_aux (Tensor): gate loss value | |
| * exp_counts (Tensor): expert count | |
| """ | |
| output = self.deepspeed_moe(hidden_states, used_token) | |
| if self.use_residual: | |
| # Residual MoE | |
| output_mlp = self.mlp(hidden_states) | |
| if isinstance(output_mlp, tuple): | |
| output_mlp = output_mlp[0] # Ignore the bias term for now | |
| coef = self.coefficient(hidden_states) | |
| coef = F.softmax(coef, dim=-1) | |
| output = output * coef[..., 0:1] + output_mlp * coef[..., 1:] | |
| return output, self.deepspeed_moe.l_aux, self.deepspeed_moe.exp_counts | |