peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/ops
/adagrad
/cpu_adagrad.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| import torch | |
| from deepspeed.ops.op_builder import CPUAdagradBuilder | |
| from deepspeed.utils.logging import should_log_le | |
| class DeepSpeedCPUAdagrad(torch.optim.Optimizer): | |
| optimizer_id = 0 | |
| def __init__(self, model_params, lr=1e-2, eps=1e-10, weight_decay=0, amsgrad=False, fp32_optimizer_states=True): | |
| default_args = dict(lr=lr, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) | |
| super(DeepSpeedCPUAdagrad, self).__init__(model_params, default_args) | |
| self.opt_id = DeepSpeedCPUAdagrad.optimizer_id | |
| DeepSpeedCPUAdagrad.optimizer_id = DeepSpeedCPUAdagrad.optimizer_id + 1 | |
| self.fp32_optimizer_states = fp32_optimizer_states | |
| self.ds_opt_adagrad = CPUAdagradBuilder().load() | |
| self.ds_opt_adagrad.create_adagrad(self.opt_id, lr, eps, weight_decay, should_log_le("info")) | |
| def __del__(self): | |
| # need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize | |
| # is used multiple times in the same process (notebook or pytest worker) | |
| self.ds_opt_adagrad.destroy_adagrad(self.opt_id) | |
| def __setstate__(self, state): | |
| super(DeepSpeedCPUAdagrad, self).__setstate__(state) | |
| for group in self.param_groups: | |
| group.setdefault('amsgrad', False) | |
| def step(self, closure=None, fp16_param_groups=None): | |
| """Update the model parameters. | |
| .. note:: | |
| This method will be called internally by ZeRO-Offload. DeepSpeed | |
| users should still use ``engine.step()`` as shown in the | |
| `Getting Started | |
| <https://www.deepspeed.ai/getting-started/#training>`_ guide. | |
| Args: | |
| closure (callable, optional): closure to compute the loss. | |
| Defaults to ``None``. | |
| fp16_param_groups: FP16 GPU parameters to update. Performing the | |
| copy here reduces communication time. Defaults to ``None``. | |
| Returns: | |
| loss: if ``closure`` is provided. Otherwise ``None``. | |
| """ | |
| loss = None | |
| if closure is not None: | |
| with torch.enable_grad(): | |
| loss = closure() | |
| # intended device for step | |
| device = torch.device('cpu') | |
| for group_id, group in enumerate(self.param_groups): | |
| for param_id, p in enumerate(group['params']): | |
| if p.grad is None: | |
| continue | |
| assert p.device == device, f"CPUAdagrad param is on {p.device} and must be 'cpu', make " \ | |
| "sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config." | |
| state = self.state[p] | |
| # State initialization | |
| if len(state) == 0: | |
| #print(f'group {group_id} param {param_id} = {p.numel()}') | |
| state['step'] = 0 | |
| #use full precision by default unless self.fp32_optimizer_states is off | |
| state_dtype = torch.float if self.fp32_optimizer_states else p.dtype | |
| #memory_format=torch.preserve_format) | |
| # gradient variances | |
| state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device='cpu') | |
| #memory_format=torch.preserve_format) | |
| state['step'] += 1 | |
| if p.grad.is_sparse == True: | |
| sparse_param = p.sparse_mask(p.grad) | |
| sparse_exp_avg_sq = state['exp_avg_sq'].sparse_mask(p.grad) | |
| self.ds_opt_adagrad.adagrad_update(self.opt_id, state['step'], group['lr'], group['eps'], | |
| group['weight_decay'], sparse_param.values(), p.grad.values(), | |
| sparse_exp_avg_sq.values()) | |
| p[sparse_param.indices()] = sparse_param.values() | |
| state['exp_avg_sq'][sparse_exp_avg_sq.indices()] = sparse_exp_avg_sq.values() | |
| if fp16_param_groups is not None: | |
| fp16_param_groups[group_id][param_id][sparse_param.indices()] = sparse_param.values() | |
| else: | |
| if fp16_param_groups is not None: | |
| self.ds_opt_adagrad.adagrad_update_copy(self.opt_id, state['step'], group['lr'], group['eps'], | |
| group['weight_decay'], p.data, p.grad.data, | |
| state['exp_avg_sq'], | |
| fp16_param_groups[group_id][param_id].data) | |
| else: | |
| self.ds_opt_adagrad.adagrad_update(self.opt_id, state['step'], group['lr'], group['eps'], | |
| group['weight_decay'], p.data, p.grad.data, | |
| state['exp_avg_sq']) | |
| return loss | |