peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/_typing.py
from __future__ import annotations | |
from collections.abc import ( | |
Hashable, | |
Iterator, | |
Mapping, | |
MutableMapping, | |
Sequence, | |
) | |
from datetime import ( | |
date, | |
datetime, | |
timedelta, | |
tzinfo, | |
) | |
from os import PathLike | |
import sys | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Callable, | |
Literal, | |
Optional, | |
Protocol, | |
Type as type_t, | |
TypeVar, | |
Union, | |
overload, | |
) | |
import numpy as np | |
# To prevent import cycles place any internal imports in the branch below | |
# and use a string literal forward reference to it in subsequent types | |
# https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles | |
if TYPE_CHECKING: | |
import numpy.typing as npt | |
from pandas._libs import ( | |
NaTType, | |
Period, | |
Timedelta, | |
Timestamp, | |
) | |
from pandas._libs.tslibs import BaseOffset | |
from pandas.core.dtypes.dtypes import ExtensionDtype | |
from pandas import Interval | |
from pandas.arrays import ( | |
DatetimeArray, | |
TimedeltaArray, | |
) | |
from pandas.core.arrays.base import ExtensionArray | |
from pandas.core.frame import DataFrame | |
from pandas.core.generic import NDFrame | |
from pandas.core.groupby.generic import ( | |
DataFrameGroupBy, | |
GroupBy, | |
SeriesGroupBy, | |
) | |
from pandas.core.indexes.base import Index | |
from pandas.core.internals import ( | |
ArrayManager, | |
BlockManager, | |
SingleArrayManager, | |
SingleBlockManager, | |
) | |
from pandas.core.resample import Resampler | |
from pandas.core.series import Series | |
from pandas.core.window.rolling import BaseWindow | |
from pandas.io.formats.format import EngFormatter | |
from pandas.tseries.holiday import AbstractHolidayCalendar | |
ScalarLike_co = Union[ | |
int, | |
float, | |
complex, | |
str, | |
bytes, | |
np.generic, | |
] | |
# numpy compatible types | |
NumpyValueArrayLike = Union[ScalarLike_co, npt.ArrayLike] | |
# Name "npt._ArrayLikeInt_co" is not defined [name-defined] | |
NumpySorter = Optional[npt._ArrayLikeInt_co] # type: ignore[name-defined] | |
from typing import SupportsIndex | |
if sys.version_info >= (3, 10): | |
from typing import TypeGuard # pyright: ignore[reportUnusedImport] | |
else: | |
from typing_extensions import TypeGuard # pyright: ignore[reportUnusedImport] | |
if sys.version_info >= (3, 11): | |
from typing import Self # pyright: ignore[reportUnusedImport] | |
else: | |
from typing_extensions import Self # pyright: ignore[reportUnusedImport] | |
else: | |
npt: Any = None | |
Self: Any = None | |
TypeGuard: Any = None | |
HashableT = TypeVar("HashableT", bound=Hashable) | |
MutableMappingT = TypeVar("MutableMappingT", bound=MutableMapping) | |
# array-like | |
ArrayLike = Union["ExtensionArray", np.ndarray] | |
AnyArrayLike = Union[ArrayLike, "Index", "Series"] | |
TimeArrayLike = Union["DatetimeArray", "TimedeltaArray"] | |
# list-like | |
# from https://github.com/hauntsaninja/useful_types | |
# includes Sequence-like objects but excludes str and bytes | |
_T_co = TypeVar("_T_co", covariant=True) | |
class SequenceNotStr(Protocol[_T_co]): | |
def __getitem__(self, index: SupportsIndex, /) -> _T_co: | |
... | |
def __getitem__(self, index: slice, /) -> Sequence[_T_co]: | |
... | |
def __contains__(self, value: object, /) -> bool: | |
... | |
def __len__(self) -> int: | |
... | |
def __iter__(self) -> Iterator[_T_co]: | |
... | |
def index(self, value: Any, /, start: int = 0, stop: int = ...) -> int: | |
... | |
def count(self, value: Any, /) -> int: | |
... | |
def __reversed__(self) -> Iterator[_T_co]: | |
... | |
ListLike = Union[AnyArrayLike, SequenceNotStr, range] | |
# scalars | |
PythonScalar = Union[str, float, bool] | |
DatetimeLikeScalar = Union["Period", "Timestamp", "Timedelta"] | |
PandasScalar = Union["Period", "Timestamp", "Timedelta", "Interval"] | |
Scalar = Union[PythonScalar, PandasScalar, np.datetime64, np.timedelta64, date] | |
IntStrT = TypeVar("IntStrT", bound=Union[int, str]) | |
# timestamp and timedelta convertible types | |
TimestampConvertibleTypes = Union[ | |
"Timestamp", date, np.datetime64, np.int64, float, str | |
] | |
TimestampNonexistent = Union[ | |
Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta | |
] | |
TimedeltaConvertibleTypes = Union[ | |
"Timedelta", timedelta, np.timedelta64, np.int64, float, str | |
] | |
Timezone = Union[str, tzinfo] | |
ToTimestampHow = Literal["s", "e", "start", "end"] | |
# NDFrameT is stricter and ensures that the same subclass of NDFrame always is | |
# used. E.g. `def func(a: NDFrameT) -> NDFrameT: ...` means that if a | |
# Series is passed into a function, a Series is always returned and if a DataFrame is | |
# passed in, a DataFrame is always returned. | |
NDFrameT = TypeVar("NDFrameT", bound="NDFrame") | |
NumpyIndexT = TypeVar("NumpyIndexT", np.ndarray, "Index") | |
AxisInt = int | |
Axis = Union[AxisInt, Literal["index", "columns", "rows"]] | |
IndexLabel = Union[Hashable, Sequence[Hashable]] | |
Level = Hashable | |
Shape = tuple[int, ...] | |
Suffixes = tuple[Optional[str], Optional[str]] | |
Ordered = Optional[bool] | |
JSONSerializable = Optional[Union[PythonScalar, list, dict]] | |
Frequency = Union[str, "BaseOffset"] | |
Axes = ListLike | |
RandomState = Union[ | |
int, | |
np.ndarray, | |
np.random.Generator, | |
np.random.BitGenerator, | |
np.random.RandomState, | |
] | |
# dtypes | |
NpDtype = Union[str, np.dtype, type_t[Union[str, complex, bool, object]]] | |
Dtype = Union["ExtensionDtype", NpDtype] | |
AstypeArg = Union["ExtensionDtype", "npt.DTypeLike"] | |
# DtypeArg specifies all allowable dtypes in a functions its dtype argument | |
DtypeArg = Union[Dtype, dict[Hashable, Dtype]] | |
DtypeObj = Union[np.dtype, "ExtensionDtype"] | |
# converters | |
ConvertersArg = dict[Hashable, Callable[[Dtype], Dtype]] | |
# parse_dates | |
ParseDatesArg = Union[ | |
bool, list[Hashable], list[list[Hashable]], dict[Hashable, list[Hashable]] | |
] | |
# For functions like rename that convert one label to another | |
Renamer = Union[Mapping[Any, Hashable], Callable[[Any], Hashable]] | |
# to maintain type information across generic functions and parametrization | |
T = TypeVar("T") | |
# used in decorators to preserve the signature of the function it decorates | |
# see https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators | |
FuncType = Callable[..., Any] | |
F = TypeVar("F", bound=FuncType) | |
# types of vectorized key functions for DataFrame::sort_values and | |
# DataFrame::sort_index, among others | |
ValueKeyFunc = Optional[Callable[["Series"], Union["Series", AnyArrayLike]]] | |
IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]] | |
# types of `func` kwarg for DataFrame.aggregate and Series.aggregate | |
AggFuncTypeBase = Union[Callable, str] | |
AggFuncTypeDict = MutableMapping[ | |
Hashable, Union[AggFuncTypeBase, list[AggFuncTypeBase]] | |
] | |
AggFuncType = Union[ | |
AggFuncTypeBase, | |
list[AggFuncTypeBase], | |
AggFuncTypeDict, | |
] | |
AggObjType = Union[ | |
"Series", | |
"DataFrame", | |
"GroupBy", | |
"SeriesGroupBy", | |
"DataFrameGroupBy", | |
"BaseWindow", | |
"Resampler", | |
] | |
PythonFuncType = Callable[[Any], Any] | |
# filenames and file-like-objects | |
AnyStr_co = TypeVar("AnyStr_co", str, bytes, covariant=True) | |
AnyStr_contra = TypeVar("AnyStr_contra", str, bytes, contravariant=True) | |
class BaseBuffer(Protocol): | |
def mode(self) -> str: | |
# for _get_filepath_or_buffer | |
... | |
def seek(self, __offset: int, __whence: int = ...) -> int: | |
# with one argument: gzip.GzipFile, bz2.BZ2File | |
# with two arguments: zip.ZipFile, read_sas | |
... | |
def seekable(self) -> bool: | |
# for bz2.BZ2File | |
... | |
def tell(self) -> int: | |
# for zip.ZipFile, read_stata, to_stata | |
... | |
class ReadBuffer(BaseBuffer, Protocol[AnyStr_co]): | |
def read(self, __n: int = ...) -> AnyStr_co: | |
# for BytesIOWrapper, gzip.GzipFile, bz2.BZ2File | |
... | |
class WriteBuffer(BaseBuffer, Protocol[AnyStr_contra]): | |
def write(self, __b: AnyStr_contra) -> Any: | |
# for gzip.GzipFile, bz2.BZ2File | |
... | |
def flush(self) -> Any: | |
# for gzip.GzipFile, bz2.BZ2File | |
... | |
class ReadPickleBuffer(ReadBuffer[bytes], Protocol): | |
def readline(self) -> bytes: | |
... | |
class WriteExcelBuffer(WriteBuffer[bytes], Protocol): | |
def truncate(self, size: int | None = ...) -> int: | |
... | |
class ReadCsvBuffer(ReadBuffer[AnyStr_co], Protocol): | |
def __iter__(self) -> Iterator[AnyStr_co]: | |
# for engine=python | |
... | |
def fileno(self) -> int: | |
# for _MMapWrapper | |
... | |
def readline(self) -> AnyStr_co: | |
# for engine=python | |
... | |
def closed(self) -> bool: | |
# for enine=pyarrow | |
... | |
FilePath = Union[str, "PathLike[str]"] | |
# for arbitrary kwargs passed during reading/writing files | |
StorageOptions = Optional[dict[str, Any]] | |
# compression keywords and compression | |
CompressionDict = dict[str, Any] | |
CompressionOptions = Optional[ | |
Union[Literal["infer", "gzip", "bz2", "zip", "xz", "zstd", "tar"], CompressionDict] | |
] | |
# types in DataFrameFormatter | |
FormattersType = Union[ | |
list[Callable], tuple[Callable, ...], Mapping[Union[str, int], Callable] | |
] | |
ColspaceType = Mapping[Hashable, Union[str, int]] | |
FloatFormatType = Union[str, Callable, "EngFormatter"] | |
ColspaceArgType = Union[ | |
str, int, Sequence[Union[str, int]], Mapping[Hashable, Union[str, int]] | |
] | |
# Arguments for fillna() | |
FillnaOptions = Literal["backfill", "bfill", "ffill", "pad"] | |
InterpolateOptions = Literal[ | |
"linear", | |
"time", | |
"index", | |
"values", | |
"nearest", | |
"zero", | |
"slinear", | |
"quadratic", | |
"cubic", | |
"barycentric", | |
"polynomial", | |
"krogh", | |
"piecewise_polynomial", | |
"spline", | |
"pchip", | |
"akima", | |
"cubicspline", | |
"from_derivatives", | |
] | |
# internals | |
Manager = Union[ | |
"ArrayManager", "SingleArrayManager", "BlockManager", "SingleBlockManager" | |
] | |
SingleManager = Union["SingleArrayManager", "SingleBlockManager"] | |
Manager2D = Union["ArrayManager", "BlockManager"] | |
# indexing | |
# PositionalIndexer -> valid 1D positional indexer, e.g. can pass | |
# to ndarray.__getitem__ | |
# ScalarIndexer is for a single value as the index | |
# SequenceIndexer is for list like or slices (but not tuples) | |
# PositionalIndexerTuple is extends the PositionalIndexer for 2D arrays | |
# These are used in various __getitem__ overloads | |
# TODO(typing#684): add Ellipsis, see | |
# https://github.com/python/typing/issues/684#issuecomment-548203158 | |
# https://bugs.python.org/issue41810 | |
# Using List[int] here rather than Sequence[int] to disallow tuples. | |
ScalarIndexer = Union[int, np.integer] | |
SequenceIndexer = Union[slice, list[int], np.ndarray] | |
PositionalIndexer = Union[ScalarIndexer, SequenceIndexer] | |
PositionalIndexerTuple = tuple[PositionalIndexer, PositionalIndexer] | |
PositionalIndexer2D = Union[PositionalIndexer, PositionalIndexerTuple] | |
if TYPE_CHECKING: | |
TakeIndexer = Union[Sequence[int], Sequence[np.integer], npt.NDArray[np.integer]] | |
else: | |
TakeIndexer = Any | |
# Shared by functions such as drop and astype | |
IgnoreRaise = Literal["ignore", "raise"] | |
# Windowing rank methods | |
WindowingRankType = Literal["average", "min", "max"] | |
# read_csv engines | |
CSVEngine = Literal["c", "python", "pyarrow", "python-fwf"] | |
# read_json engines | |
JSONEngine = Literal["ujson", "pyarrow"] | |
# read_xml parsers | |
XMLParsers = Literal["lxml", "etree"] | |
# read_html flavors | |
HTMLFlavors = Literal["lxml", "html5lib", "bs4"] | |
# Interval closed type | |
IntervalLeftRight = Literal["left", "right"] | |
IntervalClosedType = Union[IntervalLeftRight, Literal["both", "neither"]] | |
# datetime and NaTType | |
DatetimeNaTType = Union[datetime, "NaTType"] | |
DateTimeErrorChoices = Union[IgnoreRaise, Literal["coerce"]] | |
# sort_index | |
SortKind = Literal["quicksort", "mergesort", "heapsort", "stable"] | |
NaPosition = Literal["first", "last"] | |
# Arguments for nsmalles and n_largest | |
NsmallestNlargestKeep = Literal["first", "last", "all"] | |
# quantile interpolation | |
QuantileInterpolation = Literal["linear", "lower", "higher", "midpoint", "nearest"] | |
# plotting | |
PlottingOrientation = Literal["horizontal", "vertical"] | |
# dropna | |
AnyAll = Literal["any", "all"] | |
# merge | |
MergeHow = Literal["left", "right", "inner", "outer", "cross"] | |
MergeValidate = Literal[ | |
"one_to_one", | |
"1:1", | |
"one_to_many", | |
"1:m", | |
"many_to_one", | |
"m:1", | |
"many_to_many", | |
"m:m", | |
] | |
# join | |
JoinHow = Literal["left", "right", "inner", "outer"] | |
JoinValidate = Literal[ | |
"one_to_one", | |
"1:1", | |
"one_to_many", | |
"1:m", | |
"many_to_one", | |
"m:1", | |
"many_to_many", | |
"m:m", | |
] | |
# reindex | |
ReindexMethod = Union[FillnaOptions, Literal["nearest"]] | |
MatplotlibColor = Union[str, Sequence[float]] | |
TimeGrouperOrigin = Union[ | |
"Timestamp", Literal["epoch", "start", "start_day", "end", "end_day"] | |
] | |
TimeAmbiguous = Union[Literal["infer", "NaT", "raise"], "npt.NDArray[np.bool_]"] | |
TimeNonexistent = Union[ | |
Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta | |
] | |
DropKeep = Literal["first", "last", False] | |
CorrelationMethod = Union[ | |
Literal["pearson", "kendall", "spearman"], Callable[[np.ndarray, np.ndarray], float] | |
] | |
AlignJoin = Literal["outer", "inner", "left", "right"] | |
DtypeBackend = Literal["pyarrow", "numpy_nullable"] | |
TimeUnit = Literal["s", "ms", "us", "ns"] | |
OpenFileErrors = Literal[ | |
"strict", | |
"ignore", | |
"replace", | |
"surrogateescape", | |
"xmlcharrefreplace", | |
"backslashreplace", | |
"namereplace", | |
] | |
# update | |
UpdateJoin = Literal["left"] | |
# applymap | |
NaAction = Literal["ignore"] | |
# from_dict | |
FromDictOrient = Literal["columns", "index", "tight"] | |
# to_gbc | |
ToGbqIfexist = Literal["fail", "replace", "append"] | |
# to_stata | |
ToStataByteorder = Literal[">", "<", "little", "big"] | |
# ExcelWriter | |
ExcelWriterIfSheetExists = Literal["error", "new", "replace", "overlay"] | |
# Offsets | |
OffsetCalendar = Union[np.busdaycalendar, "AbstractHolidayCalendar"] | |
# read_csv: usecols | |
UsecolsArgType = Union[ | |
SequenceNotStr[Hashable], | |
range, | |
AnyArrayLike, | |
Callable[[HashableT], bool], | |
None, | |
] | |