peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/arithmetic
/test_numeric.py
# Arithmetic tests for DataFrame/Series/Index/Array classes that should | |
# behave identically. | |
# Specifically for numeric dtypes | |
from __future__ import annotations | |
from collections import abc | |
from datetime import timedelta | |
from decimal import Decimal | |
import operator | |
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
Index, | |
RangeIndex, | |
Series, | |
Timedelta, | |
TimedeltaIndex, | |
array, | |
date_range, | |
) | |
import pandas._testing as tm | |
from pandas.core import ops | |
from pandas.core.computation import expressions as expr | |
from pandas.tests.arithmetic.common import ( | |
assert_invalid_addsub_type, | |
assert_invalid_comparison, | |
) | |
def switch_numexpr_min_elements(request, monkeypatch): | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", request.param) | |
yield request.param | |
def box_pandas_1d_array(request): | |
""" | |
Fixture to test behavior for Index, Series and tm.to_array classes | |
""" | |
return request.param | |
def numeric_idx(request): | |
""" | |
Several types of numeric-dtypes Index objects | |
""" | |
return request.param | |
def box_1d_array(request): | |
""" | |
Fixture to test behavior for Index, Series, tm.to_array, numpy Array and list | |
classes | |
""" | |
return request.param | |
def adjust_negative_zero(zero, expected): | |
""" | |
Helper to adjust the expected result if we are dividing by -0.0 | |
as opposed to 0.0 | |
""" | |
if np.signbit(np.array(zero)).any(): | |
# All entries in the `zero` fixture should be either | |
# all-negative or no-negative. | |
assert np.signbit(np.array(zero)).all() | |
expected *= -1 | |
return expected | |
def compare_op(series, other, op): | |
left = np.abs(series) if op in (ops.rpow, operator.pow) else series | |
right = np.abs(other) if op in (ops.rpow, operator.pow) else other | |
cython_or_numpy = op(left, right) | |
python = left.combine(right, op) | |
if isinstance(other, Series) and not other.index.equals(series.index): | |
python.index = python.index._with_freq(None) | |
tm.assert_series_equal(cython_or_numpy, python) | |
# TODO: remove this kludge once mypy stops giving false positives here | |
# List comprehension has incompatible type List[PandasObject]; expected List[RangeIndex] | |
# See GH#29725 | |
_ldtypes = ["i1", "i2", "i4", "i8", "u1", "u2", "u4", "u8", "f2", "f4", "f8"] | |
lefts: list[Index | Series] = [RangeIndex(10, 40, 10)] | |
lefts.extend([Series([10, 20, 30], dtype=dtype) for dtype in _ldtypes]) | |
lefts.extend([Index([10, 20, 30], dtype=dtype) for dtype in _ldtypes if dtype != "f2"]) | |
# ------------------------------------------------------------------ | |
# Comparisons | |
class TestNumericComparisons: | |
def test_operator_series_comparison_zerorank(self): | |
# GH#13006 | |
result = np.float64(0) > Series([1, 2, 3]) | |
expected = 0.0 > Series([1, 2, 3]) | |
tm.assert_series_equal(result, expected) | |
result = Series([1, 2, 3]) < np.float64(0) | |
expected = Series([1, 2, 3]) < 0.0 | |
tm.assert_series_equal(result, expected) | |
result = np.array([0, 1, 2])[0] > Series([0, 1, 2]) | |
expected = 0.0 > Series([1, 2, 3]) | |
tm.assert_series_equal(result, expected) | |
def test_df_numeric_cmp_dt64_raises(self, box_with_array, fixed_now_ts): | |
# GH#8932, GH#22163 | |
ts = fixed_now_ts | |
obj = np.array(range(5)) | |
obj = tm.box_expected(obj, box_with_array) | |
assert_invalid_comparison(obj, ts, box_with_array) | |
def test_compare_invalid(self): | |
# GH#8058 | |
# ops testing | |
a = Series(np.random.default_rng(2).standard_normal(5), name=0) | |
b = Series(np.random.default_rng(2).standard_normal(5)) | |
b.name = pd.Timestamp("2000-01-01") | |
tm.assert_series_equal(a / b, 1 / (b / a)) | |
def test_numeric_cmp_string_numexpr_path(self, box_with_array, monkeypatch): | |
# GH#36377, GH#35700 | |
box = box_with_array | |
xbox = box if box is not Index else np.ndarray | |
obj = Series(np.random.default_rng(2).standard_normal(51)) | |
obj = tm.box_expected(obj, box, transpose=False) | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", 50) | |
result = obj == "a" | |
expected = Series(np.zeros(51, dtype=bool)) | |
expected = tm.box_expected(expected, xbox, transpose=False) | |
tm.assert_equal(result, expected) | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", 50) | |
result = obj != "a" | |
tm.assert_equal(result, ~expected) | |
msg = "Invalid comparison between dtype=float64 and str" | |
with pytest.raises(TypeError, match=msg): | |
obj < "a" | |
# ------------------------------------------------------------------ | |
# Numeric dtypes Arithmetic with Datetime/Timedelta Scalar | |
class TestNumericArraylikeArithmeticWithDatetimeLike: | |
def test_mul_td64arr(self, left, box_cls): | |
# GH#22390 | |
right = np.array([1, 2, 3], dtype="m8[s]") | |
right = box_cls(right) | |
expected = TimedeltaIndex(["10s", "40s", "90s"], dtype=right.dtype) | |
if isinstance(left, Series) or box_cls is Series: | |
expected = Series(expected) | |
assert expected.dtype == right.dtype | |
result = left * right | |
tm.assert_equal(result, expected) | |
result = right * left | |
tm.assert_equal(result, expected) | |
def test_div_td64arr(self, left, box_cls): | |
# GH#22390 | |
right = np.array([10, 40, 90], dtype="m8[s]") | |
right = box_cls(right) | |
expected = TimedeltaIndex(["1s", "2s", "3s"], dtype=right.dtype) | |
if isinstance(left, Series) or box_cls is Series: | |
expected = Series(expected) | |
assert expected.dtype == right.dtype | |
result = right / left | |
tm.assert_equal(result, expected) | |
result = right // left | |
tm.assert_equal(result, expected) | |
# (true_) needed for min-versions build 2022-12-26 | |
msg = "ufunc '(true_)?divide' cannot use operands with types" | |
with pytest.raises(TypeError, match=msg): | |
left / right | |
msg = "ufunc 'floor_divide' cannot use operands with types" | |
with pytest.raises(TypeError, match=msg): | |
left // right | |
# TODO: also test Tick objects; | |
# see test_numeric_arr_rdiv_tdscalar for note on these failing | |
def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array): | |
# GH#19333 | |
box = box_with_array | |
index = numeric_idx | |
expected = TimedeltaIndex([Timedelta(days=n) for n in range(len(index))]) | |
if isinstance(scalar_td, np.timedelta64): | |
dtype = scalar_td.dtype | |
expected = expected.astype(dtype) | |
elif type(scalar_td) is timedelta: | |
expected = expected.astype("m8[us]") | |
index = tm.box_expected(index, box) | |
expected = tm.box_expected(expected, box) | |
result = index * scalar_td | |
tm.assert_equal(result, expected) | |
commute = scalar_td * index | |
tm.assert_equal(commute, expected) | |
def test_numeric_arr_mul_tdscalar_numexpr_path( | |
self, dtype, scalar_td, box_with_array | |
): | |
# GH#44772 for the float64 case | |
box = box_with_array | |
arr_i8 = np.arange(2 * 10**4).astype(np.int64, copy=False) | |
arr = arr_i8.astype(dtype, copy=False) | |
obj = tm.box_expected(arr, box, transpose=False) | |
expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]") | |
if type(scalar_td) is timedelta: | |
expected = expected.astype("timedelta64[us]") | |
expected = tm.box_expected(expected, box, transpose=False) | |
result = obj * scalar_td | |
tm.assert_equal(result, expected) | |
result = scalar_td * obj | |
tm.assert_equal(result, expected) | |
def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box_with_array): | |
box = box_with_array | |
index = numeric_idx[1:3] | |
expected = TimedeltaIndex(["3 Days", "36 Hours"]) | |
if isinstance(three_days, np.timedelta64): | |
dtype = three_days.dtype | |
if dtype < np.dtype("m8[s]"): | |
# i.e. resolution is lower -> use lowest supported resolution | |
dtype = np.dtype("m8[s]") | |
expected = expected.astype(dtype) | |
elif type(three_days) is timedelta: | |
expected = expected.astype("m8[us]") | |
elif isinstance( | |
three_days, | |
(pd.offsets.Day, pd.offsets.Hour, pd.offsets.Minute, pd.offsets.Second), | |
): | |
# closest reso is Second | |
expected = expected.astype("m8[s]") | |
index = tm.box_expected(index, box) | |
expected = tm.box_expected(expected, box) | |
result = three_days / index | |
tm.assert_equal(result, expected) | |
msg = "cannot use operands with types dtype" | |
with pytest.raises(TypeError, match=msg): | |
index / three_days | |
def test_add_sub_datetimedeltalike_invalid( | |
self, numeric_idx, other, box_with_array | |
): | |
box = box_with_array | |
left = tm.box_expected(numeric_idx, box) | |
msg = "|".join( | |
[ | |
"unsupported operand type", | |
"Addition/subtraction of integers and integer-arrays", | |
"Instead of adding/subtracting", | |
"cannot use operands with types dtype", | |
"Concatenation operation is not implemented for NumPy arrays", | |
"Cannot (add|subtract) NaT (to|from) ndarray", | |
# pd.array vs np.datetime64 case | |
r"operand type\(s\) all returned NotImplemented from __array_ufunc__", | |
"can only perform ops with numeric values", | |
"cannot subtract DatetimeArray from ndarray", | |
# pd.Timedelta(1) + Index([0, 1, 2]) | |
"Cannot add or subtract Timedelta from integers", | |
] | |
) | |
assert_invalid_addsub_type(left, other, msg) | |
# ------------------------------------------------------------------ | |
# Arithmetic | |
class TestDivisionByZero: | |
def test_div_zero(self, zero, numeric_idx): | |
idx = numeric_idx | |
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64) | |
# We only adjust for Index, because Series does not yet apply | |
# the adjustment correctly. | |
expected2 = adjust_negative_zero(zero, expected) | |
result = idx / zero | |
tm.assert_index_equal(result, expected2) | |
ser_compat = Series(idx).astype("i8") / np.array(zero).astype("i8") | |
tm.assert_series_equal(ser_compat, Series(expected)) | |
def test_floordiv_zero(self, zero, numeric_idx): | |
idx = numeric_idx | |
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64) | |
# We only adjust for Index, because Series does not yet apply | |
# the adjustment correctly. | |
expected2 = adjust_negative_zero(zero, expected) | |
result = idx // zero | |
tm.assert_index_equal(result, expected2) | |
ser_compat = Series(idx).astype("i8") // np.array(zero).astype("i8") | |
tm.assert_series_equal(ser_compat, Series(expected)) | |
def test_mod_zero(self, zero, numeric_idx): | |
idx = numeric_idx | |
expected = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64) | |
result = idx % zero | |
tm.assert_index_equal(result, expected) | |
ser_compat = Series(idx).astype("i8") % np.array(zero).astype("i8") | |
tm.assert_series_equal(ser_compat, Series(result)) | |
def test_divmod_zero(self, zero, numeric_idx): | |
idx = numeric_idx | |
exleft = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64) | |
exright = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64) | |
exleft = adjust_negative_zero(zero, exleft) | |
result = divmod(idx, zero) | |
tm.assert_index_equal(result[0], exleft) | |
tm.assert_index_equal(result[1], exright) | |
def test_div_negative_zero(self, zero, numeric_idx, op): | |
# Check that -1 / -0.0 returns np.inf, not -np.inf | |
if numeric_idx.dtype == np.uint64: | |
pytest.skip(f"Div by negative 0 not relevant for {numeric_idx.dtype}") | |
idx = numeric_idx - 3 | |
expected = Index([-np.inf, -np.inf, -np.inf, np.nan, np.inf], dtype=np.float64) | |
expected = adjust_negative_zero(zero, expected) | |
result = op(idx, zero) | |
tm.assert_index_equal(result, expected) | |
# ------------------------------------------------------------------ | |
def test_ser_div_ser( | |
self, | |
switch_numexpr_min_elements, | |
dtype1, | |
any_real_numpy_dtype, | |
): | |
# no longer do integer div for any ops, but deal with the 0's | |
dtype2 = any_real_numpy_dtype | |
first = Series([3, 4, 5, 8], name="first").astype(dtype1) | |
second = Series([0, 0, 0, 3], name="second").astype(dtype2) | |
with np.errstate(all="ignore"): | |
expected = Series( | |
first.values.astype(np.float64) / second.values, | |
dtype="float64", | |
name=None, | |
) | |
expected.iloc[0:3] = np.inf | |
if first.dtype == "int64" and second.dtype == "float32": | |
# when using numexpr, the casting rules are slightly different | |
# and int64/float32 combo results in float32 instead of float64 | |
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0: | |
expected = expected.astype("float32") | |
result = first / second | |
tm.assert_series_equal(result, expected) | |
assert not result.equals(second / first) | |
def test_ser_divmod_zero(self, dtype1, any_real_numpy_dtype): | |
# GH#26987 | |
dtype2 = any_real_numpy_dtype | |
left = Series([1, 1]).astype(dtype1) | |
right = Series([0, 2]).astype(dtype2) | |
# GH#27321 pandas convention is to set 1 // 0 to np.inf, as opposed | |
# to numpy which sets to np.nan; patch `expected[0]` below | |
expected = left // right, left % right | |
expected = list(expected) | |
expected[0] = expected[0].astype(np.float64) | |
expected[0][0] = np.inf | |
result = divmod(left, right) | |
tm.assert_series_equal(result[0], expected[0]) | |
tm.assert_series_equal(result[1], expected[1]) | |
# rdivmod case | |
result = divmod(left.values, right) | |
tm.assert_series_equal(result[0], expected[0]) | |
tm.assert_series_equal(result[1], expected[1]) | |
def test_ser_divmod_inf(self): | |
left = Series([np.inf, 1.0]) | |
right = Series([np.inf, 2.0]) | |
expected = left // right, left % right | |
result = divmod(left, right) | |
tm.assert_series_equal(result[0], expected[0]) | |
tm.assert_series_equal(result[1], expected[1]) | |
# rdivmod case | |
result = divmod(left.values, right) | |
tm.assert_series_equal(result[0], expected[0]) | |
tm.assert_series_equal(result[1], expected[1]) | |
def test_rdiv_zero_compat(self): | |
# GH#8674 | |
zero_array = np.array([0] * 5) | |
data = np.random.default_rng(2).standard_normal(5) | |
expected = Series([0.0] * 5) | |
result = zero_array / Series(data) | |
tm.assert_series_equal(result, expected) | |
result = Series(zero_array) / data | |
tm.assert_series_equal(result, expected) | |
result = Series(zero_array) / Series(data) | |
tm.assert_series_equal(result, expected) | |
def test_div_zero_inf_signs(self): | |
# GH#9144, inf signing | |
ser = Series([-1, 0, 1], name="first") | |
expected = Series([-np.inf, np.nan, np.inf], name="first") | |
result = ser / 0 | |
tm.assert_series_equal(result, expected) | |
def test_rdiv_zero(self): | |
# GH#9144 | |
ser = Series([-1, 0, 1], name="first") | |
expected = Series([0.0, np.nan, 0.0], name="first") | |
result = 0 / ser | |
tm.assert_series_equal(result, expected) | |
def test_floordiv_div(self): | |
# GH#9144 | |
ser = Series([-1, 0, 1], name="first") | |
result = ser // 0 | |
expected = Series([-np.inf, np.nan, np.inf], name="first") | |
tm.assert_series_equal(result, expected) | |
def test_df_div_zero_df(self): | |
# integer div, but deal with the 0's (GH#9144) | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
result = df / df | |
first = Series([1.0, 1.0, 1.0, 1.0]) | |
second = Series([np.nan, np.nan, np.nan, 1]) | |
expected = pd.DataFrame({"first": first, "second": second}) | |
tm.assert_frame_equal(result, expected) | |
def test_df_div_zero_array(self): | |
# integer div, but deal with the 0's (GH#9144) | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
first = Series([1.0, 1.0, 1.0, 1.0]) | |
second = Series([np.nan, np.nan, np.nan, 1]) | |
expected = pd.DataFrame({"first": first, "second": second}) | |
with np.errstate(all="ignore"): | |
arr = df.values.astype("float") / df.values | |
result = pd.DataFrame(arr, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(result, expected) | |
def test_df_div_zero_int(self): | |
# integer div, but deal with the 0's (GH#9144) | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
result = df / 0 | |
expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns) | |
expected.iloc[0:3, 1] = np.nan | |
tm.assert_frame_equal(result, expected) | |
# numpy has a slightly different (wrong) treatment | |
with np.errstate(all="ignore"): | |
arr = df.values.astype("float64") / 0 | |
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(result2, expected) | |
def test_df_div_zero_series_does_not_commute(self): | |
# integer div, but deal with the 0's (GH#9144) | |
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5))) | |
ser = df[0] | |
res = ser / df | |
res2 = df / ser | |
assert not res.fillna(0).equals(res2.fillna(0)) | |
# ------------------------------------------------------------------ | |
# Mod By Zero | |
def test_df_mod_zero_df(self, using_array_manager): | |
# GH#3590, modulo as ints | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
# this is technically wrong, as the integer portion is coerced to float | |
first = Series([0, 0, 0, 0]) | |
if not using_array_manager: | |
# INFO(ArrayManager) BlockManager doesn't preserve dtype per column | |
# while ArrayManager performs op column-wisedoes and thus preserves | |
# dtype if possible | |
first = first.astype("float64") | |
second = Series([np.nan, np.nan, np.nan, 0]) | |
expected = pd.DataFrame({"first": first, "second": second}) | |
result = df % df | |
tm.assert_frame_equal(result, expected) | |
# GH#38939 If we dont pass copy=False, df is consolidated and | |
# result["first"] is float64 instead of int64 | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}, copy=False) | |
first = Series([0, 0, 0, 0], dtype="int64") | |
second = Series([np.nan, np.nan, np.nan, 0]) | |
expected = pd.DataFrame({"first": first, "second": second}) | |
result = df % df | |
tm.assert_frame_equal(result, expected) | |
def test_df_mod_zero_array(self): | |
# GH#3590, modulo as ints | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
# this is technically wrong, as the integer portion is coerced to float | |
# ### | |
first = Series([0, 0, 0, 0], dtype="float64") | |
second = Series([np.nan, np.nan, np.nan, 0]) | |
expected = pd.DataFrame({"first": first, "second": second}) | |
# numpy has a slightly different (wrong) treatment | |
with np.errstate(all="ignore"): | |
arr = df.values % df.values | |
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype="float64") | |
result2.iloc[0:3, 1] = np.nan | |
tm.assert_frame_equal(result2, expected) | |
def test_df_mod_zero_int(self): | |
# GH#3590, modulo as ints | |
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
result = df % 0 | |
expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(result, expected) | |
# numpy has a slightly different (wrong) treatment | |
with np.errstate(all="ignore"): | |
arr = df.values.astype("float64") % 0 | |
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(result2, expected) | |
def test_df_mod_zero_series_does_not_commute(self): | |
# GH#3590, modulo as ints | |
# not commutative with series | |
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5))) | |
ser = df[0] | |
res = ser % df | |
res2 = df % ser | |
assert not res.fillna(0).equals(res2.fillna(0)) | |
class TestMultiplicationDivision: | |
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ | |
# for non-timestamp/timedelta/period dtypes | |
def test_divide_decimal(self, box_with_array): | |
# resolves issue GH#9787 | |
box = box_with_array | |
ser = Series([Decimal(10)]) | |
expected = Series([Decimal(5)]) | |
ser = tm.box_expected(ser, box) | |
expected = tm.box_expected(expected, box) | |
result = ser / Decimal(2) | |
tm.assert_equal(result, expected) | |
result = ser // Decimal(2) | |
tm.assert_equal(result, expected) | |
def test_div_equiv_binop(self): | |
# Test Series.div as well as Series.__div__ | |
# float/integer issue | |
# GH#7785 | |
first = Series([1, 0], name="first") | |
second = Series([-0.01, -0.02], name="second") | |
expected = Series([-0.01, -np.inf]) | |
result = second.div(first) | |
tm.assert_series_equal(result, expected, check_names=False) | |
result = second / first | |
tm.assert_series_equal(result, expected) | |
def test_div_int(self, numeric_idx): | |
idx = numeric_idx | |
result = idx / 1 | |
expected = idx.astype("float64") | |
tm.assert_index_equal(result, expected) | |
result = idx / 2 | |
expected = Index(idx.values / 2) | |
tm.assert_index_equal(result, expected) | |
def test_mul_int_identity(self, op, numeric_idx, box_with_array): | |
idx = numeric_idx | |
idx = tm.box_expected(idx, box_with_array) | |
result = op(idx, 1) | |
tm.assert_equal(result, idx) | |
def test_mul_int_array(self, numeric_idx): | |
idx = numeric_idx | |
didx = idx * idx | |
result = idx * np.array(5, dtype="int64") | |
tm.assert_index_equal(result, idx * 5) | |
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64" | |
result = idx * np.arange(5, dtype=arr_dtype) | |
tm.assert_index_equal(result, didx) | |
def test_mul_int_series(self, numeric_idx): | |
idx = numeric_idx | |
didx = idx * idx | |
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64" | |
result = idx * Series(np.arange(5, dtype=arr_dtype)) | |
tm.assert_series_equal(result, Series(didx)) | |
def test_mul_float_series(self, numeric_idx): | |
idx = numeric_idx | |
rng5 = np.arange(5, dtype="float64") | |
result = idx * Series(rng5 + 0.1) | |
expected = Series(rng5 * (rng5 + 0.1)) | |
tm.assert_series_equal(result, expected) | |
def test_mul_index(self, numeric_idx): | |
idx = numeric_idx | |
result = idx * idx | |
tm.assert_index_equal(result, idx**2) | |
def test_mul_datelike_raises(self, numeric_idx): | |
idx = numeric_idx | |
msg = "cannot perform __rmul__ with this index type" | |
with pytest.raises(TypeError, match=msg): | |
idx * date_range("20130101", periods=5) | |
def test_mul_size_mismatch_raises(self, numeric_idx): | |
idx = numeric_idx | |
msg = "operands could not be broadcast together" | |
with pytest.raises(ValueError, match=msg): | |
idx * idx[0:3] | |
with pytest.raises(ValueError, match=msg): | |
idx * np.array([1, 2]) | |
def test_pow_float(self, op, numeric_idx, box_with_array): | |
# test power calculations both ways, GH#14973 | |
box = box_with_array | |
idx = numeric_idx | |
expected = Index(op(idx.values, 2.0)) | |
idx = tm.box_expected(idx, box) | |
expected = tm.box_expected(expected, box) | |
result = op(idx, 2.0) | |
tm.assert_equal(result, expected) | |
def test_modulo(self, numeric_idx, box_with_array): | |
# GH#9244 | |
box = box_with_array | |
idx = numeric_idx | |
expected = Index(idx.values % 2) | |
idx = tm.box_expected(idx, box) | |
expected = tm.box_expected(expected, box) | |
result = idx % 2 | |
tm.assert_equal(result, expected) | |
def test_divmod_scalar(self, numeric_idx): | |
idx = numeric_idx | |
result = divmod(idx, 2) | |
with np.errstate(all="ignore"): | |
div, mod = divmod(idx.values, 2) | |
expected = Index(div), Index(mod) | |
for r, e in zip(result, expected): | |
tm.assert_index_equal(r, e) | |
def test_divmod_ndarray(self, numeric_idx): | |
idx = numeric_idx | |
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2 | |
result = divmod(idx, other) | |
with np.errstate(all="ignore"): | |
div, mod = divmod(idx.values, other) | |
expected = Index(div), Index(mod) | |
for r, e in zip(result, expected): | |
tm.assert_index_equal(r, e) | |
def test_divmod_series(self, numeric_idx): | |
idx = numeric_idx | |
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2 | |
result = divmod(idx, Series(other)) | |
with np.errstate(all="ignore"): | |
div, mod = divmod(idx.values, other) | |
expected = Series(div), Series(mod) | |
for r, e in zip(result, expected): | |
tm.assert_series_equal(r, e) | |
def test_ops_np_scalar(self, other): | |
vals = np.random.default_rng(2).standard_normal((5, 3)) | |
f = lambda x: pd.DataFrame( | |
x, index=list("ABCDE"), columns=["jim", "joe", "jolie"] | |
) | |
df = f(vals) | |
tm.assert_frame_equal(df / np.array(other), f(vals / other)) | |
tm.assert_frame_equal(np.array(other) * df, f(vals * other)) | |
tm.assert_frame_equal(df + np.array(other), f(vals + other)) | |
tm.assert_frame_equal(np.array(other) - df, f(other - vals)) | |
# TODO: This came from series.test.test_operators, needs cleanup | |
def test_operators_frame(self): | |
# rpow does not work with DataFrame | |
ts = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
ts.name = "ts" | |
df = pd.DataFrame({"A": ts}) | |
tm.assert_series_equal(ts + ts, ts + df["A"], check_names=False) | |
tm.assert_series_equal(ts**ts, ts ** df["A"], check_names=False) | |
tm.assert_series_equal(ts < ts, ts < df["A"], check_names=False) | |
tm.assert_series_equal(ts / ts, ts / df["A"], check_names=False) | |
# TODO: this came from tests.series.test_analytics, needs cleanup and | |
# de-duplication with test_modulo above | |
def test_modulo2(self): | |
with np.errstate(all="ignore"): | |
# GH#3590, modulo as ints | |
p = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}) | |
result = p["first"] % p["second"] | |
expected = Series(p["first"].values % p["second"].values, dtype="float64") | |
expected.iloc[0:3] = np.nan | |
tm.assert_series_equal(result, expected) | |
result = p["first"] % 0 | |
expected = Series(np.nan, index=p.index, name="first") | |
tm.assert_series_equal(result, expected) | |
p = p.astype("float64") | |
result = p["first"] % p["second"] | |
expected = Series(p["first"].values % p["second"].values) | |
tm.assert_series_equal(result, expected) | |
p = p.astype("float64") | |
result = p["first"] % p["second"] | |
result2 = p["second"] % p["first"] | |
assert not result.equals(result2) | |
def test_modulo_zero_int(self): | |
# GH#9144 | |
with np.errstate(all="ignore"): | |
s = Series([0, 1]) | |
result = s % 0 | |
expected = Series([np.nan, np.nan]) | |
tm.assert_series_equal(result, expected) | |
result = 0 % s | |
expected = Series([np.nan, 0.0]) | |
tm.assert_series_equal(result, expected) | |
class TestAdditionSubtraction: | |
# __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__ | |
# for non-timestamp/timedelta/period dtypes | |
def test_add_series(self, first, second, expected): | |
# GH#1134 | |
tm.assert_series_equal(first + second, expected) | |
tm.assert_series_equal(second + first, expected) | |
def test_add_frames(self, first, second, expected): | |
# GH#1134 | |
tm.assert_frame_equal(first + second, expected) | |
tm.assert_frame_equal(second + first, expected) | |
# TODO: This came from series.test.test_operators, needs cleanup | |
def test_series_frame_radd_bug(self, fixed_now_ts): | |
# GH#353 | |
vals = Series([str(i) for i in range(5)]) | |
result = "foo_" + vals | |
expected = vals.map(lambda x: "foo_" + x) | |
tm.assert_series_equal(result, expected) | |
frame = pd.DataFrame({"vals": vals}) | |
result = "foo_" + frame | |
expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)}) | |
tm.assert_frame_equal(result, expected) | |
ts = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
# really raise this time | |
fix_now = fixed_now_ts.to_pydatetime() | |
msg = "|".join( | |
[ | |
"unsupported operand type", | |
# wrong error message, see https://github.com/numpy/numpy/issues/18832 | |
"Concatenation operation", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
fix_now + ts | |
with pytest.raises(TypeError, match=msg): | |
ts + fix_now | |
# TODO: This came from series.test.test_operators, needs cleanup | |
def test_datetime64_with_index(self): | |
# arithmetic integer ops with an index | |
ser = Series(np.random.default_rng(2).standard_normal(5)) | |
expected = ser - ser.index.to_series() | |
result = ser - ser.index | |
tm.assert_series_equal(result, expected) | |
# GH#4629 | |
# arithmetic datetime64 ops with an index | |
ser = Series( | |
date_range("20130101", periods=5), | |
index=date_range("20130101", periods=5), | |
) | |
expected = ser - ser.index.to_series() | |
result = ser - ser.index | |
tm.assert_series_equal(result, expected) | |
msg = "cannot subtract PeriodArray from DatetimeArray" | |
with pytest.raises(TypeError, match=msg): | |
# GH#18850 | |
result = ser - ser.index.to_period() | |
df = pd.DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), | |
index=date_range("20130101", periods=5), | |
) | |
df["date"] = pd.Timestamp("20130102") | |
df["expected"] = df["date"] - df.index.to_series() | |
df["result"] = df["date"] - df.index | |
tm.assert_series_equal(df["result"], df["expected"], check_names=False) | |
# TODO: taken from tests.frame.test_operators, needs cleanup | |
def test_frame_operators(self, float_frame): | |
frame = float_frame | |
garbage = np.random.default_rng(2).random(4) | |
colSeries = Series(garbage, index=np.array(frame.columns)) | |
idSum = frame + frame | |
seriesSum = frame + colSeries | |
for col, series in idSum.items(): | |
for idx, val in series.items(): | |
origVal = frame[col][idx] * 2 | |
if not np.isnan(val): | |
assert val == origVal | |
else: | |
assert np.isnan(origVal) | |
for col, series in seriesSum.items(): | |
for idx, val in series.items(): | |
origVal = frame[col][idx] + colSeries[col] | |
if not np.isnan(val): | |
assert val == origVal | |
else: | |
assert np.isnan(origVal) | |
def test_frame_operators_col_align(self, float_frame): | |
frame2 = pd.DataFrame(float_frame, columns=["D", "C", "B", "A"]) | |
added = frame2 + frame2 | |
expected = frame2 * 2 | |
tm.assert_frame_equal(added, expected) | |
def test_frame_operators_none_to_nan(self): | |
df = pd.DataFrame({"a": ["a", None, "b"]}) | |
tm.assert_frame_equal(df + df, pd.DataFrame({"a": ["aa", np.nan, "bb"]})) | |
def test_frame_operators_empty_like(self, dtype): | |
# Test for issue #10181 | |
frames = [ | |
pd.DataFrame(dtype=dtype), | |
pd.DataFrame(columns=["A"], dtype=dtype), | |
pd.DataFrame(index=[0], dtype=dtype), | |
] | |
for df in frames: | |
assert (df + df).equals(df) | |
tm.assert_frame_equal(df + df, df) | |
def test_series_operators_arithmetic(self, all_arithmetic_functions, func): | |
op = all_arithmetic_functions | |
series = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
other = func(series) | |
compare_op(series, other, op) | |
def test_series_operators_compare(self, comparison_op, func): | |
op = comparison_op | |
series = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
other = func(series) | |
compare_op(series, other, op) | |
def test_divmod(self, func): | |
series = Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
other = func(series) | |
results = divmod(series, other) | |
if isinstance(other, abc.Iterable) and len(series) != len(other): | |
# if the lengths don't match, this is the test where we use | |
# `tser[::2]`. Pad every other value in `other_np` with nan. | |
other_np = [] | |
for n in other: | |
other_np.append(n) | |
other_np.append(np.nan) | |
else: | |
other_np = other | |
other_np = np.asarray(other_np) | |
with np.errstate(all="ignore"): | |
expecteds = divmod(series.values, np.asarray(other_np)) | |
for result, expected in zip(results, expecteds): | |
# check the values, name, and index separately | |
tm.assert_almost_equal(np.asarray(result), expected) | |
assert result.name == series.name | |
tm.assert_index_equal(result.index, series.index._with_freq(None)) | |
def test_series_divmod_zero(self): | |
# Check that divmod uses pandas convention for division by zero, | |
# which does not match numpy. | |
# pandas convention has | |
# 1/0 == np.inf | |
# -1/0 == -np.inf | |
# 1/-0.0 == -np.inf | |
# -1/-0.0 == np.inf | |
tser = Series( | |
np.arange(1, 11, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
name="ts", | |
) | |
other = tser * 0 | |
result = divmod(tser, other) | |
exp1 = Series([np.inf] * len(tser), index=tser.index, name="ts") | |
exp2 = Series([np.nan] * len(tser), index=tser.index, name="ts") | |
tm.assert_series_equal(result[0], exp1) | |
tm.assert_series_equal(result[1], exp2) | |
class TestUFuncCompat: | |
# TODO: add more dtypes | |
def test_ufunc_compat(self, holder, dtype): | |
box = Series if holder is Series else Index | |
if holder is RangeIndex: | |
if dtype != np.int64: | |
pytest.skip(f"dtype {dtype} not relevant for RangeIndex") | |
idx = RangeIndex(0, 5, name="foo") | |
else: | |
idx = holder(np.arange(5, dtype=dtype), name="foo") | |
result = np.sin(idx) | |
expected = box(np.sin(np.arange(5, dtype=dtype)), name="foo") | |
tm.assert_equal(result, expected) | |
# TODO: add more dtypes | |
def test_ufunc_coercions(self, holder, dtype): | |
idx = holder([1, 2, 3, 4, 5], dtype=dtype, name="x") | |
box = Series if holder is Series else Index | |
result = np.sqrt(idx) | |
assert result.dtype == "f8" and isinstance(result, box) | |
exp = Index(np.sqrt(np.array([1, 2, 3, 4, 5], dtype=np.float64)), name="x") | |
exp = tm.box_expected(exp, box) | |
tm.assert_equal(result, exp) | |
result = np.divide(idx, 2.0) | |
assert result.dtype == "f8" and isinstance(result, box) | |
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x") | |
exp = tm.box_expected(exp, box) | |
tm.assert_equal(result, exp) | |
# _evaluate_numeric_binop | |
result = idx + 2.0 | |
assert result.dtype == "f8" and isinstance(result, box) | |
exp = Index([3.0, 4.0, 5.0, 6.0, 7.0], dtype=np.float64, name="x") | |
exp = tm.box_expected(exp, box) | |
tm.assert_equal(result, exp) | |
result = idx - 2.0 | |
assert result.dtype == "f8" and isinstance(result, box) | |
exp = Index([-1.0, 0.0, 1.0, 2.0, 3.0], dtype=np.float64, name="x") | |
exp = tm.box_expected(exp, box) | |
tm.assert_equal(result, exp) | |
result = idx * 1.0 | |
assert result.dtype == "f8" and isinstance(result, box) | |
exp = Index([1.0, 2.0, 3.0, 4.0, 5.0], dtype=np.float64, name="x") | |
exp = tm.box_expected(exp, box) | |
tm.assert_equal(result, exp) | |
result = idx / 2.0 | |
assert result.dtype == "f8" and isinstance(result, box) | |
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x") | |
exp = tm.box_expected(exp, box) | |
tm.assert_equal(result, exp) | |
# TODO: add more dtypes | |
def test_ufunc_multiple_return_values(self, holder, dtype): | |
obj = holder([1, 2, 3], dtype=dtype, name="x") | |
box = Series if holder is Series else Index | |
result = np.modf(obj) | |
assert isinstance(result, tuple) | |
exp1 = Index([0.0, 0.0, 0.0], dtype=np.float64, name="x") | |
exp2 = Index([1.0, 2.0, 3.0], dtype=np.float64, name="x") | |
tm.assert_equal(result[0], tm.box_expected(exp1, box)) | |
tm.assert_equal(result[1], tm.box_expected(exp2, box)) | |
def test_ufunc_at(self): | |
s = Series([0, 1, 2], index=[1, 2, 3], name="x") | |
np.add.at(s, [0, 2], 10) | |
expected = Series([10, 1, 12], index=[1, 2, 3], name="x") | |
tm.assert_series_equal(s, expected) | |
class TestObjectDtypeEquivalence: | |
# Tests that arithmetic operations match operations executed elementwise | |
def test_numarr_with_dtype_add_nan(self, dtype, box_with_array): | |
box = box_with_array | |
ser = Series([1, 2, 3], dtype=dtype) | |
expected = Series([np.nan, np.nan, np.nan], dtype=dtype) | |
ser = tm.box_expected(ser, box) | |
expected = tm.box_expected(expected, box) | |
result = np.nan + ser | |
tm.assert_equal(result, expected) | |
result = ser + np.nan | |
tm.assert_equal(result, expected) | |
def test_numarr_with_dtype_add_int(self, dtype, box_with_array): | |
box = box_with_array | |
ser = Series([1, 2, 3], dtype=dtype) | |
expected = Series([2, 3, 4], dtype=dtype) | |
ser = tm.box_expected(ser, box) | |
expected = tm.box_expected(expected, box) | |
result = 1 + ser | |
tm.assert_equal(result, expected) | |
result = ser + 1 | |
tm.assert_equal(result, expected) | |
# TODO: moved from tests.series.test_operators; needs cleanup | |
def test_operators_reverse_object(self, op): | |
# GH#56 | |
arr = Series( | |
np.random.default_rng(2).standard_normal(10), | |
index=np.arange(10), | |
dtype=object, | |
) | |
result = op(1.0, arr) | |
expected = op(1.0, arr.astype(float)) | |
tm.assert_series_equal(result.astype(float), expected) | |
class TestNumericArithmeticUnsorted: | |
# Tests in this class have been moved from type-specific test modules | |
# but not yet sorted, parametrized, and de-duplicated | |
def test_binops_index(self, op, idx1, idx2): | |
idx1 = idx1._rename("foo") | |
idx2 = idx2._rename("bar") | |
result = op(idx1, idx2) | |
expected = op(Index(idx1.to_numpy()), Index(idx2.to_numpy())) | |
tm.assert_index_equal(result, expected, exact="equiv") | |
def test_binops_index_scalar(self, op, idx, scalar): | |
result = op(idx, scalar) | |
expected = op(Index(idx.to_numpy()), scalar) | |
tm.assert_index_equal(result, expected, exact="equiv") | |
def test_binops_index_pow(self, idx1, idx2): | |
# numpy does not allow powers of negative integers so test separately | |
# https://github.com/numpy/numpy/pull/8127 | |
idx1 = idx1._rename("foo") | |
idx2 = idx2._rename("bar") | |
result = pow(idx1, idx2) | |
expected = pow(Index(idx1.to_numpy()), Index(idx2.to_numpy())) | |
tm.assert_index_equal(result, expected, exact="equiv") | |
def test_binops_index_scalar_pow(self, idx, scalar): | |
# numpy does not allow powers of negative integers so test separately | |
# https://github.com/numpy/numpy/pull/8127 | |
result = pow(idx, scalar) | |
expected = pow(Index(idx.to_numpy()), scalar) | |
tm.assert_index_equal(result, expected, exact="equiv") | |
# TODO: divmod? | |
def test_arithmetic_with_frame_or_series(self, op): | |
# check that we return NotImplemented when operating with Series | |
# or DataFrame | |
index = RangeIndex(5) | |
other = Series(np.random.default_rng(2).standard_normal(5)) | |
expected = op(Series(index), other) | |
result = op(index, other) | |
tm.assert_series_equal(result, expected) | |
other = pd.DataFrame(np.random.default_rng(2).standard_normal((2, 5))) | |
expected = op(pd.DataFrame([index, index]), other) | |
result = op(index, other) | |
tm.assert_frame_equal(result, expected) | |
def test_numeric_compat2(self): | |
# validate that we are handling the RangeIndex overrides to numeric ops | |
# and returning RangeIndex where possible | |
idx = RangeIndex(0, 10, 2) | |
result = idx * 2 | |
expected = RangeIndex(0, 20, 4) | |
tm.assert_index_equal(result, expected, exact=True) | |
result = idx + 2 | |
expected = RangeIndex(2, 12, 2) | |
tm.assert_index_equal(result, expected, exact=True) | |
result = idx - 2 | |
expected = RangeIndex(-2, 8, 2) | |
tm.assert_index_equal(result, expected, exact=True) | |
result = idx / 2 | |
expected = RangeIndex(0, 5, 1).astype("float64") | |
tm.assert_index_equal(result, expected, exact=True) | |
result = idx / 4 | |
expected = RangeIndex(0, 10, 2) / 4 | |
tm.assert_index_equal(result, expected, exact=True) | |
result = idx // 1 | |
expected = idx | |
tm.assert_index_equal(result, expected, exact=True) | |
# __mul__ | |
result = idx * idx | |
expected = Index(idx.values * idx.values) | |
tm.assert_index_equal(result, expected, exact=True) | |
# __pow__ | |
idx = RangeIndex(0, 1000, 2) | |
result = idx**2 | |
expected = Index(idx._values) ** 2 | |
tm.assert_index_equal(Index(result.values), expected, exact=True) | |
def test_numeric_compat2_floordiv(self, idx, div, expected): | |
# __floordiv__ | |
tm.assert_index_equal(idx // div, expected, exact=True) | |
def test_addsub_arithmetic(self, dtype, delta): | |
# GH#8142 | |
delta = dtype(delta) | |
index = Index([10, 11, 12], dtype=dtype) | |
result = index + delta | |
expected = Index(index.values + delta, dtype=dtype) | |
tm.assert_index_equal(result, expected) | |
# this subtraction used to fail | |
result = index - delta | |
expected = Index(index.values - delta, dtype=dtype) | |
tm.assert_index_equal(result, expected) | |
tm.assert_index_equal(index + index, 2 * index) | |
tm.assert_index_equal(index - index, 0 * index) | |
assert not (index - index).empty | |
def test_pow_nan_with_zero(self, box_with_array): | |
left = Index([np.nan, np.nan, np.nan]) | |
right = Index([0, 0, 0]) | |
expected = Index([1.0, 1.0, 1.0]) | |
left = tm.box_expected(left, box_with_array) | |
right = tm.box_expected(right, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = left**right | |
tm.assert_equal(result, expected) | |
def test_fill_value_inf_masking(): | |
# GH #27464 make sure we mask 0/1 with Inf and not NaN | |
df = pd.DataFrame({"A": [0, 1, 2], "B": [1.1, None, 1.1]}) | |
other = pd.DataFrame({"A": [1.1, 1.2, 1.3]}, index=[0, 2, 3]) | |
result = df.rfloordiv(other, fill_value=1) | |
expected = pd.DataFrame( | |
{"A": [np.inf, 1.0, 0.0, 1.0], "B": [0.0, np.nan, 0.0, np.nan]} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_dataframe_div_silenced(): | |
# GH#26793 | |
pdf1 = pd.DataFrame( | |
{ | |
"A": np.arange(10), | |
"B": [np.nan, 1, 2, 3, 4] * 2, | |
"C": [np.nan] * 10, | |
"D": np.arange(10), | |
}, | |
index=list("abcdefghij"), | |
columns=list("ABCD"), | |
) | |
pdf2 = pd.DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
index=list("abcdefghjk"), | |
columns=list("ABCX"), | |
) | |
with tm.assert_produces_warning(None): | |
pdf1.div(pdf2, fill_value=0) | |
def test_integer_array_add_list_like( | |
box_pandas_1d_array, box_1d_array, data, expected_data | |
): | |
# GH22606 Verify operators with IntegerArray and list-likes | |
arr = array(data, dtype="Int64") | |
container = box_pandas_1d_array(arr) | |
left = container + box_1d_array(data) | |
right = box_1d_array(data) + container | |
if Series in [box_1d_array, box_pandas_1d_array]: | |
cls = Series | |
elif Index in [box_1d_array, box_pandas_1d_array]: | |
cls = Index | |
else: | |
cls = array | |
expected = cls(expected_data, dtype="Int64") | |
tm.assert_equal(left, expected) | |
tm.assert_equal(right, expected) | |
def test_sub_multiindex_swapped_levels(): | |
# GH 9952 | |
df = pd.DataFrame( | |
{"a": np.random.default_rng(2).standard_normal(6)}, | |
index=pd.MultiIndex.from_product( | |
[["a", "b"], [0, 1, 2]], names=["levA", "levB"] | |
), | |
) | |
df2 = df.copy() | |
df2.index = df2.index.swaplevel(0, 1) | |
result = df - df2 | |
expected = pd.DataFrame([0.0] * 6, columns=["a"], index=df.index) | |
tm.assert_frame_equal(result, expected) | |
def test_empty_str_comparison(power, string_size): | |
# GH 37348 | |
a = np.array(range(10**power)) | |
right = pd.DataFrame(a, dtype=np.int64) | |
left = " " * string_size | |
result = right == left | |
expected = pd.DataFrame(np.zeros(right.shape, dtype=bool)) | |
tm.assert_frame_equal(result, expected) | |
def test_series_add_sub_with_UInt64(): | |
# GH 22023 | |
series1 = Series([1, 2, 3]) | |
series2 = Series([2, 1, 3], dtype="UInt64") | |
result = series1 + series2 | |
expected = Series([3, 3, 6], dtype="Float64") | |
tm.assert_series_equal(result, expected) | |
result = series1 - series2 | |
expected = Series([-1, 1, 0], dtype="Float64") | |
tm.assert_series_equal(result, expected) | |