peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/groupby.py
import re | |
import pytest | |
from pandas.core.dtypes.common import ( | |
is_bool_dtype, | |
is_numeric_dtype, | |
is_object_dtype, | |
is_string_dtype, | |
) | |
import pandas as pd | |
import pandas._testing as tm | |
class BaseGroupbyTests: | |
"""Groupby-specific tests.""" | |
def test_grouping_grouper(self, data_for_grouping): | |
df = pd.DataFrame( | |
{ | |
"A": pd.Series( | |
["B", "B", None, None, "A", "A", "B", "C"], dtype=object | |
), | |
"B": data_for_grouping, | |
} | |
) | |
gr1 = df.groupby("A")._grouper.groupings[0] | |
gr2 = df.groupby("B")._grouper.groupings[0] | |
tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values) | |
tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping) | |
def test_groupby_extension_agg(self, as_index, data_for_grouping): | |
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) | |
is_bool = data_for_grouping.dtype._is_boolean | |
if is_bool: | |
# only 2 unique values, and the final entry has c==b | |
# (see data_for_grouping docstring) | |
df = df.iloc[:-1] | |
result = df.groupby("B", as_index=as_index).A.mean() | |
_, uniques = pd.factorize(data_for_grouping, sort=True) | |
exp_vals = [3.0, 1.0, 4.0] | |
if is_bool: | |
exp_vals = exp_vals[:-1] | |
if as_index: | |
index = pd.Index(uniques, name="B") | |
expected = pd.Series(exp_vals, index=index, name="A") | |
tm.assert_series_equal(result, expected) | |
else: | |
expected = pd.DataFrame({"B": uniques, "A": exp_vals}) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_agg_extension(self, data_for_grouping): | |
# GH#38980 groupby agg on extension type fails for non-numeric types | |
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) | |
expected = df.iloc[[0, 2, 4, 7]] | |
expected = expected.set_index("A") | |
result = df.groupby("A").agg({"B": "first"}) | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("A").agg("first") | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("A").first() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_extension_no_sort(self, data_for_grouping): | |
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) | |
is_bool = data_for_grouping.dtype._is_boolean | |
if is_bool: | |
# only 2 unique values, and the final entry has c==b | |
# (see data_for_grouping docstring) | |
df = df.iloc[:-1] | |
result = df.groupby("B", sort=False).A.mean() | |
_, index = pd.factorize(data_for_grouping, sort=False) | |
index = pd.Index(index, name="B") | |
exp_vals = [1.0, 3.0, 4.0] | |
if is_bool: | |
exp_vals = exp_vals[:-1] | |
expected = pd.Series(exp_vals, index=index, name="A") | |
tm.assert_series_equal(result, expected) | |
def test_groupby_extension_transform(self, data_for_grouping): | |
is_bool = data_for_grouping.dtype._is_boolean | |
valid = data_for_grouping[~data_for_grouping.isna()] | |
df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid}) | |
is_bool = data_for_grouping.dtype._is_boolean | |
if is_bool: | |
# only 2 unique values, and the final entry has c==b | |
# (see data_for_grouping docstring) | |
df = df.iloc[:-1] | |
result = df.groupby("B").A.transform(len) | |
expected = pd.Series([3, 3, 2, 2, 3, 1], name="A") | |
if is_bool: | |
expected = expected[:-1] | |
tm.assert_series_equal(result, expected) | |
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op): | |
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
df.groupby("B", group_keys=False, observed=False).apply(groupby_apply_op) | |
df.groupby("B", group_keys=False, observed=False).A.apply(groupby_apply_op) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
df.groupby("A", group_keys=False, observed=False).apply(groupby_apply_op) | |
df.groupby("A", group_keys=False, observed=False).B.apply(groupby_apply_op) | |
def test_groupby_apply_identity(self, data_for_grouping): | |
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) | |
result = df.groupby("A").B.apply(lambda x: x.array) | |
expected = pd.Series( | |
[ | |
df.B.iloc[[0, 1, 6]].array, | |
df.B.iloc[[2, 3]].array, | |
df.B.iloc[[4, 5]].array, | |
df.B.iloc[[7]].array, | |
], | |
index=pd.Index([1, 2, 3, 4], name="A"), | |
name="B", | |
) | |
tm.assert_series_equal(result, expected) | |
def test_in_numeric_groupby(self, data_for_grouping): | |
df = pd.DataFrame( | |
{ | |
"A": [1, 1, 2, 2, 3, 3, 1, 4], | |
"B": data_for_grouping, | |
"C": [1, 1, 1, 1, 1, 1, 1, 1], | |
} | |
) | |
dtype = data_for_grouping.dtype | |
if ( | |
is_numeric_dtype(dtype) | |
or is_bool_dtype(dtype) | |
or dtype.name == "decimal" | |
or is_string_dtype(dtype) | |
or is_object_dtype(dtype) | |
or dtype.kind == "m" # in particular duration[*][pyarrow] | |
): | |
expected = pd.Index(["B", "C"]) | |
result = df.groupby("A").sum().columns | |
else: | |
expected = pd.Index(["C"]) | |
msg = "|".join( | |
[ | |
# period/datetime | |
"does not support sum operations", | |
# all others | |
re.escape(f"agg function failed [how->sum,dtype->{dtype}"), | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
df.groupby("A").sum() | |
result = df.groupby("A").sum(numeric_only=True).columns | |
tm.assert_index_equal(result, expected) | |