peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/methods.py
import inspect | |
import operator | |
import numpy as np | |
import pytest | |
from pandas._typing import Dtype | |
from pandas.core.dtypes.common import is_bool_dtype | |
from pandas.core.dtypes.dtypes import NumpyEADtype | |
from pandas.core.dtypes.missing import na_value_for_dtype | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.sorting import nargsort | |
class BaseMethodsTests: | |
"""Various Series and DataFrame methods.""" | |
def test_hash_pandas_object(self, data): | |
# _hash_pandas_object should return a uint64 ndarray of the same length | |
# as the data | |
from pandas.core.util.hashing import _default_hash_key | |
res = data._hash_pandas_object( | |
encoding="utf-8", hash_key=_default_hash_key, categorize=False | |
) | |
assert res.dtype == np.uint64 | |
assert res.shape == data.shape | |
def test_value_counts_default_dropna(self, data): | |
# make sure we have consistent default dropna kwarg | |
if not hasattr(data, "value_counts"): | |
pytest.skip(f"value_counts is not implemented for {type(data)}") | |
sig = inspect.signature(data.value_counts) | |
kwarg = sig.parameters["dropna"] | |
assert kwarg.default is True | |
def test_value_counts(self, all_data, dropna): | |
all_data = all_data[:10] | |
if dropna: | |
other = all_data[~all_data.isna()] | |
else: | |
other = all_data | |
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index() | |
expected = pd.Series(other).value_counts(dropna=dropna).sort_index() | |
tm.assert_series_equal(result, expected) | |
def test_value_counts_with_normalize(self, data): | |
# GH 33172 | |
data = data[:10].unique() | |
values = np.array(data[~data.isna()]) | |
ser = pd.Series(data, dtype=data.dtype) | |
result = ser.value_counts(normalize=True).sort_index() | |
if not isinstance(data, pd.Categorical): | |
expected = pd.Series( | |
[1 / len(values)] * len(values), index=result.index, name="proportion" | |
) | |
else: | |
expected = pd.Series(0.0, index=result.index, name="proportion") | |
expected[result > 0] = 1 / len(values) | |
if getattr(data.dtype, "storage", "") == "pyarrow" or isinstance( | |
data.dtype, pd.ArrowDtype | |
): | |
# TODO: avoid special-casing | |
expected = expected.astype("double[pyarrow]") | |
elif getattr(data.dtype, "storage", "") == "pyarrow_numpy": | |
# TODO: avoid special-casing | |
expected = expected.astype("float64") | |
elif na_value_for_dtype(data.dtype) is pd.NA: | |
# TODO(GH#44692): avoid special-casing | |
expected = expected.astype("Float64") | |
tm.assert_series_equal(result, expected) | |
def test_count(self, data_missing): | |
df = pd.DataFrame({"A": data_missing}) | |
result = df.count(axis="columns") | |
expected = pd.Series([0, 1]) | |
tm.assert_series_equal(result, expected) | |
def test_series_count(self, data_missing): | |
# GH#26835 | |
ser = pd.Series(data_missing) | |
result = ser.count() | |
expected = 1 | |
assert result == expected | |
def test_apply_simple_series(self, data): | |
result = pd.Series(data).apply(id) | |
assert isinstance(result, pd.Series) | |
def test_map(self, data_missing, na_action): | |
result = data_missing.map(lambda x: x, na_action=na_action) | |
expected = data_missing.to_numpy() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_argsort(self, data_for_sorting): | |
result = pd.Series(data_for_sorting).argsort() | |
# argsort result gets passed to take, so should be np.intp | |
expected = pd.Series(np.array([2, 0, 1], dtype=np.intp)) | |
tm.assert_series_equal(result, expected) | |
def test_argsort_missing_array(self, data_missing_for_sorting): | |
result = data_missing_for_sorting.argsort() | |
# argsort result gets passed to take, so should be np.intp | |
expected = np.array([2, 0, 1], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_argsort_missing(self, data_missing_for_sorting): | |
msg = "The behavior of Series.argsort in the presence of NA values" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = pd.Series(data_missing_for_sorting).argsort() | |
expected = pd.Series(np.array([1, -1, 0], dtype=np.intp)) | |
tm.assert_series_equal(result, expected) | |
def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value): | |
# GH 24382 | |
is_bool = data_for_sorting.dtype._is_boolean | |
exp_argmax = 1 | |
exp_argmax_repeated = 3 | |
if is_bool: | |
# See data_for_sorting docstring | |
exp_argmax = 0 | |
exp_argmax_repeated = 1 | |
# data_for_sorting -> [B, C, A] with A < B < C | |
assert data_for_sorting.argmax() == exp_argmax | |
assert data_for_sorting.argmin() == 2 | |
# with repeated values -> first occurrence | |
data = data_for_sorting.take([2, 0, 0, 1, 1, 2]) | |
assert data.argmax() == exp_argmax_repeated | |
assert data.argmin() == 0 | |
# with missing values | |
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing. | |
assert data_missing_for_sorting.argmax() == 0 | |
assert data_missing_for_sorting.argmin() == 2 | |
def test_argmin_argmax_empty_array(self, method, data): | |
# GH 24382 | |
err_msg = "attempt to get" | |
with pytest.raises(ValueError, match=err_msg): | |
getattr(data[:0], method)() | |
def test_argmin_argmax_all_na(self, method, data, na_value): | |
# all missing with skipna=True is the same as empty | |
err_msg = "attempt to get" | |
data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype) | |
with pytest.raises(ValueError, match=err_msg): | |
getattr(data_na, method)() | |
def test_argreduce_series( | |
self, data_missing_for_sorting, op_name, skipna, expected | |
): | |
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing. | |
warn = None | |
msg = "The behavior of Series.argmax/argmin" | |
if op_name.startswith("arg") and expected == -1: | |
warn = FutureWarning | |
if op_name.startswith("idx") and np.isnan(expected): | |
warn = FutureWarning | |
msg = f"The behavior of Series.{op_name}" | |
ser = pd.Series(data_missing_for_sorting) | |
with tm.assert_produces_warning(warn, match=msg): | |
result = getattr(ser, op_name)(skipna=skipna) | |
tm.assert_almost_equal(result, expected) | |
def test_argmax_argmin_no_skipna_notimplemented(self, data_missing_for_sorting): | |
# GH#38733 | |
data = data_missing_for_sorting | |
with pytest.raises(NotImplementedError, match=""): | |
data.argmin(skipna=False) | |
with pytest.raises(NotImplementedError, match=""): | |
data.argmax(skipna=False) | |
def test_nargsort(self, data_missing_for_sorting, na_position, expected): | |
# GH 25439 | |
result = nargsort(data_missing_for_sorting, na_position=na_position) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_sort_values(self, data_for_sorting, ascending, sort_by_key): | |
ser = pd.Series(data_for_sorting) | |
result = ser.sort_values(ascending=ascending, key=sort_by_key) | |
expected = ser.iloc[[2, 0, 1]] | |
if not ascending: | |
# GH 35922. Expect stable sort | |
if ser.nunique() == 2: | |
expected = ser.iloc[[0, 1, 2]] | |
else: | |
expected = ser.iloc[[1, 0, 2]] | |
tm.assert_series_equal(result, expected) | |
def test_sort_values_missing( | |
self, data_missing_for_sorting, ascending, sort_by_key | |
): | |
ser = pd.Series(data_missing_for_sorting) | |
result = ser.sort_values(ascending=ascending, key=sort_by_key) | |
if ascending: | |
expected = ser.iloc[[2, 0, 1]] | |
else: | |
expected = ser.iloc[[0, 2, 1]] | |
tm.assert_series_equal(result, expected) | |
def test_sort_values_frame(self, data_for_sorting, ascending): | |
df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting}) | |
result = df.sort_values(["A", "B"]) | |
expected = pd.DataFrame( | |
{"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1] | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_duplicated(self, data, keep): | |
arr = data.take([0, 1, 0, 1]) | |
result = arr.duplicated(keep=keep) | |
if keep == "first": | |
expected = np.array([False, False, True, True]) | |
elif keep == "last": | |
expected = np.array([True, True, False, False]) | |
else: | |
expected = np.array([True, True, True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_unique(self, data, box, method): | |
duplicated = box(data._from_sequence([data[0], data[0]], dtype=data.dtype)) | |
result = method(duplicated) | |
assert len(result) == 1 | |
assert isinstance(result, type(data)) | |
assert result[0] == duplicated[0] | |
def test_factorize(self, data_for_grouping): | |
codes, uniques = pd.factorize(data_for_grouping, use_na_sentinel=True) | |
is_bool = data_for_grouping.dtype._is_boolean | |
if is_bool: | |
# only 2 unique values | |
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 0], dtype=np.intp) | |
expected_uniques = data_for_grouping.take([0, 4]) | |
else: | |
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 2], dtype=np.intp) | |
expected_uniques = data_for_grouping.take([0, 4, 7]) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_extension_array_equal(uniques, expected_uniques) | |
def test_factorize_equivalence(self, data_for_grouping): | |
codes_1, uniques_1 = pd.factorize(data_for_grouping, use_na_sentinel=True) | |
codes_2, uniques_2 = data_for_grouping.factorize(use_na_sentinel=True) | |
tm.assert_numpy_array_equal(codes_1, codes_2) | |
tm.assert_extension_array_equal(uniques_1, uniques_2) | |
assert len(uniques_1) == len(pd.unique(uniques_1)) | |
assert uniques_1.dtype == data_for_grouping.dtype | |
def test_factorize_empty(self, data): | |
codes, uniques = pd.factorize(data[:0]) | |
expected_codes = np.array([], dtype=np.intp) | |
expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype) | |
tm.assert_numpy_array_equal(codes, expected_codes) | |
tm.assert_extension_array_equal(uniques, expected_uniques) | |
def test_fillna_copy_frame(self, data_missing): | |
arr = data_missing.take([1, 1]) | |
df = pd.DataFrame({"A": arr}) | |
df_orig = df.copy() | |
filled_val = df.iloc[0, 0] | |
result = df.fillna(filled_val) | |
result.iloc[0, 0] = filled_val | |
tm.assert_frame_equal(df, df_orig) | |
def test_fillna_copy_series(self, data_missing): | |
arr = data_missing.take([1, 1]) | |
ser = pd.Series(arr, copy=False) | |
ser_orig = ser.copy() | |
filled_val = ser[0] | |
result = ser.fillna(filled_val) | |
result.iloc[0] = filled_val | |
tm.assert_series_equal(ser, ser_orig) | |
def test_fillna_length_mismatch(self, data_missing): | |
msg = "Length of 'value' does not match." | |
with pytest.raises(ValueError, match=msg): | |
data_missing.fillna(data_missing.take([1])) | |
# Subclasses can override if we expect e.g Sparse[bool], boolean, pyarrow[bool] | |
_combine_le_expected_dtype: Dtype = NumpyEADtype("bool") | |
def test_combine_le(self, data_repeated): | |
# GH 20825 | |
# Test that combine works when doing a <= (le) comparison | |
orig_data1, orig_data2 = data_repeated(2) | |
s1 = pd.Series(orig_data1) | |
s2 = pd.Series(orig_data2) | |
result = s1.combine(s2, lambda x1, x2: x1 <= x2) | |
expected = pd.Series( | |
pd.array( | |
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))], | |
dtype=self._combine_le_expected_dtype, | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
val = s1.iloc[0] | |
result = s1.combine(val, lambda x1, x2: x1 <= x2) | |
expected = pd.Series( | |
pd.array( | |
[a <= val for a in list(orig_data1)], | |
dtype=self._combine_le_expected_dtype, | |
) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_combine_add(self, data_repeated): | |
# GH 20825 | |
orig_data1, orig_data2 = data_repeated(2) | |
s1 = pd.Series(orig_data1) | |
s2 = pd.Series(orig_data2) | |
# Check if the operation is supported pointwise for our scalars. If not, | |
# we will expect Series.combine to raise as well. | |
try: | |
with np.errstate(over="ignore"): | |
expected = pd.Series( | |
orig_data1._from_sequence( | |
[a + b for (a, b) in zip(list(orig_data1), list(orig_data2))] | |
) | |
) | |
except TypeError: | |
# If the operation is not supported pointwise for our scalars, | |
# then Series.combine should also raise | |
with pytest.raises(TypeError): | |
s1.combine(s2, lambda x1, x2: x1 + x2) | |
return | |
result = s1.combine(s2, lambda x1, x2: x1 + x2) | |
tm.assert_series_equal(result, expected) | |
val = s1.iloc[0] | |
result = s1.combine(val, lambda x1, x2: x1 + x2) | |
expected = pd.Series( | |
orig_data1._from_sequence([a + val for a in list(orig_data1)]) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_combine_first(self, data): | |
# https://github.com/pandas-dev/pandas/issues/24147 | |
a = pd.Series(data[:3]) | |
b = pd.Series(data[2:5], index=[2, 3, 4]) | |
result = a.combine_first(b) | |
expected = pd.Series(data[:5]) | |
tm.assert_series_equal(result, expected) | |
def test_container_shift(self, data, frame, periods, indices): | |
# https://github.com/pandas-dev/pandas/issues/22386 | |
subset = data[:5] | |
data = pd.Series(subset, name="A") | |
expected = pd.Series(subset.take(indices, allow_fill=True), name="A") | |
if frame: | |
result = data.to_frame(name="A").assign(B=1).shift(periods) | |
expected = pd.concat( | |
[expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1 | |
) | |
compare = tm.assert_frame_equal | |
else: | |
result = data.shift(periods) | |
compare = tm.assert_series_equal | |
compare(result, expected) | |
def test_shift_0_periods(self, data): | |
# GH#33856 shifting with periods=0 should return a copy, not same obj | |
result = data.shift(0) | |
assert data[0] != data[1] # otherwise below is invalid | |
data[0] = data[1] | |
assert result[0] != result[1] # i.e. not the same object/view | |
def test_diff(self, data, periods): | |
data = data[:5] | |
if is_bool_dtype(data.dtype): | |
op = operator.xor | |
else: | |
op = operator.sub | |
try: | |
# does this array implement ops? | |
op(data, data) | |
except Exception: | |
pytest.skip(f"{type(data)} does not support diff") | |
s = pd.Series(data) | |
result = s.diff(periods) | |
expected = pd.Series(op(data, data.shift(periods))) | |
tm.assert_series_equal(result, expected) | |
df = pd.DataFrame({"A": data, "B": [1.0] * 5}) | |
result = df.diff(periods) | |
if periods == 1: | |
b = [np.nan, 0, 0, 0, 0] | |
else: | |
b = [0, 0, 0, np.nan, np.nan] | |
expected = pd.DataFrame({"A": expected, "B": b}) | |
tm.assert_frame_equal(result, expected) | |
def test_shift_non_empty_array(self, data, periods, indices): | |
# https://github.com/pandas-dev/pandas/issues/23911 | |
subset = data[:2] | |
result = subset.shift(periods) | |
expected = subset.take(indices, allow_fill=True) | |
tm.assert_extension_array_equal(result, expected) | |
def test_shift_empty_array(self, data, periods): | |
# https://github.com/pandas-dev/pandas/issues/23911 | |
empty = data[:0] | |
result = empty.shift(periods) | |
expected = empty | |
tm.assert_extension_array_equal(result, expected) | |
def test_shift_zero_copies(self, data): | |
# GH#31502 | |
result = data.shift(0) | |
assert result is not data | |
result = data[:0].shift(2) | |
assert result is not data | |
def test_shift_fill_value(self, data): | |
arr = data[:4] | |
fill_value = data[0] | |
result = arr.shift(1, fill_value=fill_value) | |
expected = data.take([0, 0, 1, 2]) | |
tm.assert_extension_array_equal(result, expected) | |
result = arr.shift(-2, fill_value=fill_value) | |
expected = data.take([2, 3, 0, 0]) | |
tm.assert_extension_array_equal(result, expected) | |
def test_not_hashable(self, data): | |
# We are in general mutable, so not hashable | |
with pytest.raises(TypeError, match="unhashable type"): | |
hash(data) | |
def test_hash_pandas_object_works(self, data, as_frame): | |
# https://github.com/pandas-dev/pandas/issues/23066 | |
data = pd.Series(data) | |
if as_frame: | |
data = data.to_frame() | |
a = pd.util.hash_pandas_object(data) | |
b = pd.util.hash_pandas_object(data) | |
tm.assert_equal(a, b) | |
def test_searchsorted(self, data_for_sorting, as_series): | |
if data_for_sorting.dtype._is_boolean: | |
return self._test_searchsorted_bool_dtypes(data_for_sorting, as_series) | |
b, c, a = data_for_sorting | |
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c] | |
if as_series: | |
arr = pd.Series(arr) | |
assert arr.searchsorted(a) == 0 | |
assert arr.searchsorted(a, side="right") == 1 | |
assert arr.searchsorted(b) == 1 | |
assert arr.searchsorted(b, side="right") == 2 | |
assert arr.searchsorted(c) == 2 | |
assert arr.searchsorted(c, side="right") == 3 | |
result = arr.searchsorted(arr.take([0, 2])) | |
expected = np.array([0, 2], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
# sorter | |
sorter = np.array([1, 2, 0]) | |
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0 | |
def _test_searchsorted_bool_dtypes(self, data_for_sorting, as_series): | |
# We call this from test_searchsorted in cases where we have a | |
# boolean-like dtype. The non-bool test assumes we have more than 2 | |
# unique values. | |
dtype = data_for_sorting.dtype | |
data_for_sorting = pd.array([True, False], dtype=dtype) | |
b, a = data_for_sorting | |
arr = type(data_for_sorting)._from_sequence([a, b]) | |
if as_series: | |
arr = pd.Series(arr) | |
assert arr.searchsorted(a) == 0 | |
assert arr.searchsorted(a, side="right") == 1 | |
assert arr.searchsorted(b) == 1 | |
assert arr.searchsorted(b, side="right") == 2 | |
result = arr.searchsorted(arr.take([0, 1])) | |
expected = np.array([0, 1], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
# sorter | |
sorter = np.array([1, 0]) | |
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0 | |
def test_where_series(self, data, na_value, as_frame): | |
assert data[0] != data[1] | |
cls = type(data) | |
a, b = data[:2] | |
orig = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype)) | |
ser = orig.copy() | |
cond = np.array([True, True, False, False]) | |
if as_frame: | |
ser = ser.to_frame(name="a") | |
cond = cond.reshape(-1, 1) | |
result = ser.where(cond) | |
expected = pd.Series( | |
cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype) | |
) | |
if as_frame: | |
expected = expected.to_frame(name="a") | |
tm.assert_equal(result, expected) | |
ser.mask(~cond, inplace=True) | |
tm.assert_equal(ser, expected) | |
# array other | |
ser = orig.copy() | |
if as_frame: | |
ser = ser.to_frame(name="a") | |
cond = np.array([True, False, True, True]) | |
other = cls._from_sequence([a, b, a, b], dtype=data.dtype) | |
if as_frame: | |
other = pd.DataFrame({"a": other}) | |
cond = pd.DataFrame({"a": cond}) | |
result = ser.where(cond, other) | |
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype)) | |
if as_frame: | |
expected = expected.to_frame(name="a") | |
tm.assert_equal(result, expected) | |
ser.mask(~cond, other, inplace=True) | |
tm.assert_equal(ser, expected) | |
def test_repeat(self, data, repeats, as_series, use_numpy): | |
arr = type(data)._from_sequence(data[:3], dtype=data.dtype) | |
if as_series: | |
arr = pd.Series(arr) | |
result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats) | |
repeats = [repeats] * 3 if isinstance(repeats, int) else repeats | |
expected = [x for x, n in zip(arr, repeats) for _ in range(n)] | |
expected = type(data)._from_sequence(expected, dtype=data.dtype) | |
if as_series: | |
expected = pd.Series(expected, index=arr.index.repeat(repeats)) | |
tm.assert_equal(result, expected) | |
def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy): | |
with pytest.raises(error, match=msg): | |
if use_numpy: | |
np.repeat(data, repeats, **kwargs) | |
else: | |
data.repeat(repeats, **kwargs) | |
def test_delete(self, data): | |
result = data.delete(0) | |
expected = data[1:] | |
tm.assert_extension_array_equal(result, expected) | |
result = data.delete([1, 3]) | |
expected = data._concat_same_type([data[[0]], data[[2]], data[4:]]) | |
tm.assert_extension_array_equal(result, expected) | |
def test_insert(self, data): | |
# insert at the beginning | |
result = data[1:].insert(0, data[0]) | |
tm.assert_extension_array_equal(result, data) | |
result = data[1:].insert(-len(data[1:]), data[0]) | |
tm.assert_extension_array_equal(result, data) | |
# insert at the middle | |
result = data[:-1].insert(4, data[-1]) | |
taker = np.arange(len(data)) | |
taker[5:] = taker[4:-1] | |
taker[4] = len(data) - 1 | |
expected = data.take(taker) | |
tm.assert_extension_array_equal(result, expected) | |
def test_insert_invalid(self, data, invalid_scalar): | |
item = invalid_scalar | |
with pytest.raises((TypeError, ValueError)): | |
data.insert(0, item) | |
with pytest.raises((TypeError, ValueError)): | |
data.insert(4, item) | |
with pytest.raises((TypeError, ValueError)): | |
data.insert(len(data) - 1, item) | |
def test_insert_invalid_loc(self, data): | |
ub = len(data) | |
with pytest.raises(IndexError): | |
data.insert(ub + 1, data[0]) | |
with pytest.raises(IndexError): | |
data.insert(-ub - 1, data[0]) | |
with pytest.raises(TypeError): | |
# we expect TypeError here instead of IndexError to match np.insert | |
data.insert(1.5, data[0]) | |
def test_equals(self, data, na_value, as_series, box): | |
data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype) | |
data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype) | |
data = tm.box_expected(data, box, transpose=False) | |
data2 = tm.box_expected(data2, box, transpose=False) | |
data_na = tm.box_expected(data_na, box, transpose=False) | |
# we are asserting with `is True/False` explicitly, to test that the | |
# result is an actual Python bool, and not something "truthy" | |
assert data.equals(data) is True | |
assert data.equals(data.copy()) is True | |
# unequal other data | |
assert data.equals(data2) is False | |
assert data.equals(data_na) is False | |
# different length | |
assert data[:2].equals(data[:3]) is False | |
# empty are equal | |
assert data[:0].equals(data[:0]) is True | |
# other types | |
assert data.equals(None) is False | |
assert data[[0]].equals(data[0]) is False | |
def test_equals_same_data_different_object(self, data): | |
# https://github.com/pandas-dev/pandas/issues/34660 | |
assert pd.Series(data).equals(pd.Series(data)) | |