peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/ops.py
from __future__ import annotations | |
from typing import final | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas.core.dtypes.common import is_string_dtype | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core import ops | |
class BaseOpsUtil: | |
series_scalar_exc: type[Exception] | None = TypeError | |
frame_scalar_exc: type[Exception] | None = TypeError | |
series_array_exc: type[Exception] | None = TypeError | |
divmod_exc: type[Exception] | None = TypeError | |
def _get_expected_exception( | |
self, op_name: str, obj, other | |
) -> type[Exception] | None: | |
# Find the Exception, if any we expect to raise calling | |
# obj.__op_name__(other) | |
# The self.obj_bar_exc pattern isn't great in part because it can depend | |
# on op_name or dtypes, but we use it here for backward-compatibility. | |
if op_name in ["__divmod__", "__rdivmod__"]: | |
result = self.divmod_exc | |
elif isinstance(obj, pd.Series) and isinstance(other, pd.Series): | |
result = self.series_array_exc | |
elif isinstance(obj, pd.Series): | |
result = self.series_scalar_exc | |
else: | |
result = self.frame_scalar_exc | |
if using_pyarrow_string_dtype() and result is not None: | |
import pyarrow as pa | |
result = ( # type: ignore[assignment] | |
result, | |
pa.lib.ArrowNotImplementedError, | |
NotImplementedError, | |
) | |
return result | |
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result): | |
# In _check_op we check that the result of a pointwise operation | |
# (found via _combine) matches the result of the vectorized | |
# operation obj.__op_name__(other). | |
# In some cases pandas dtype inference on the scalar result may not | |
# give a matching dtype even if both operations are behaving "correctly". | |
# In these cases, do extra required casting here. | |
return pointwise_result | |
def get_op_from_name(self, op_name: str): | |
return tm.get_op_from_name(op_name) | |
# Subclasses are not expected to need to override check_opname, _check_op, | |
# _check_divmod_op, or _combine. | |
# Ideally any relevant overriding can be done in _cast_pointwise_result, | |
# get_op_from_name, and the specification of `exc`. If you find a use | |
# case that still requires overriding _check_op or _combine, please let | |
# us know at github.com/pandas-dev/pandas/issues | |
def check_opname(self, ser: pd.Series, op_name: str, other): | |
exc = self._get_expected_exception(op_name, ser, other) | |
op = self.get_op_from_name(op_name) | |
self._check_op(ser, op, other, op_name, exc) | |
# see comment on check_opname | |
def _combine(self, obj, other, op): | |
if isinstance(obj, pd.DataFrame): | |
if len(obj.columns) != 1: | |
raise NotImplementedError | |
expected = obj.iloc[:, 0].combine(other, op).to_frame() | |
else: | |
expected = obj.combine(other, op) | |
return expected | |
# see comment on check_opname | |
def _check_op( | |
self, ser: pd.Series, op, other, op_name: str, exc=NotImplementedError | |
): | |
# Check that the Series/DataFrame arithmetic/comparison method matches | |
# the pointwise result from _combine. | |
if exc is None: | |
result = op(ser, other) | |
expected = self._combine(ser, other, op) | |
expected = self._cast_pointwise_result(op_name, ser, other, expected) | |
assert isinstance(result, type(ser)) | |
tm.assert_equal(result, expected) | |
else: | |
with pytest.raises(exc): | |
op(ser, other) | |
# see comment on check_opname | |
def _check_divmod_op(self, ser: pd.Series, op, other): | |
# check that divmod behavior matches behavior of floordiv+mod | |
if op is divmod: | |
exc = self._get_expected_exception("__divmod__", ser, other) | |
else: | |
exc = self._get_expected_exception("__rdivmod__", ser, other) | |
if exc is None: | |
result_div, result_mod = op(ser, other) | |
if op is divmod: | |
expected_div, expected_mod = ser // other, ser % other | |
else: | |
expected_div, expected_mod = other // ser, other % ser | |
tm.assert_series_equal(result_div, expected_div) | |
tm.assert_series_equal(result_mod, expected_mod) | |
else: | |
with pytest.raises(exc): | |
divmod(ser, other) | |
class BaseArithmeticOpsTests(BaseOpsUtil): | |
""" | |
Various Series and DataFrame arithmetic ops methods. | |
Subclasses supporting various ops should set the class variables | |
to indicate that they support ops of that kind | |
* series_scalar_exc = TypeError | |
* frame_scalar_exc = TypeError | |
* series_array_exc = TypeError | |
* divmod_exc = TypeError | |
""" | |
series_scalar_exc: type[Exception] | None = TypeError | |
frame_scalar_exc: type[Exception] | None = TypeError | |
series_array_exc: type[Exception] | None = TypeError | |
divmod_exc: type[Exception] | None = TypeError | |
def test_arith_series_with_scalar(self, data, all_arithmetic_operators): | |
# series & scalar | |
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype): | |
pytest.skip("Skip testing Python string formatting") | |
op_name = all_arithmetic_operators | |
ser = pd.Series(data) | |
self.check_opname(ser, op_name, ser.iloc[0]) | |
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): | |
# frame & scalar | |
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype): | |
pytest.skip("Skip testing Python string formatting") | |
op_name = all_arithmetic_operators | |
df = pd.DataFrame({"A": data}) | |
self.check_opname(df, op_name, data[0]) | |
def test_arith_series_with_array(self, data, all_arithmetic_operators): | |
# ndarray & other series | |
op_name = all_arithmetic_operators | |
ser = pd.Series(data) | |
self.check_opname(ser, op_name, pd.Series([ser.iloc[0]] * len(ser))) | |
def test_divmod(self, data): | |
ser = pd.Series(data) | |
self._check_divmod_op(ser, divmod, 1) | |
self._check_divmod_op(1, ops.rdivmod, ser) | |
def test_divmod_series_array(self, data, data_for_twos): | |
ser = pd.Series(data) | |
self._check_divmod_op(ser, divmod, data) | |
other = data_for_twos | |
self._check_divmod_op(other, ops.rdivmod, ser) | |
other = pd.Series(other) | |
self._check_divmod_op(other, ops.rdivmod, ser) | |
def test_add_series_with_extension_array(self, data): | |
# Check adding an ExtensionArray to a Series of the same dtype matches | |
# the behavior of adding the arrays directly and then wrapping in a | |
# Series. | |
ser = pd.Series(data) | |
exc = self._get_expected_exception("__add__", ser, data) | |
if exc is not None: | |
with pytest.raises(exc): | |
ser + data | |
return | |
result = ser + data | |
expected = pd.Series(data + data) | |
tm.assert_series_equal(result, expected) | |
def test_direct_arith_with_ndframe_returns_not_implemented( | |
self, data, box, op_name | |
): | |
# EAs should return NotImplemented for ops with Series/DataFrame/Index | |
# Pandas takes care of unboxing the series and calling the EA's op. | |
other = box(data) | |
if hasattr(data, op_name): | |
result = getattr(data, op_name)(other) | |
assert result is NotImplemented | |
class BaseComparisonOpsTests(BaseOpsUtil): | |
"""Various Series and DataFrame comparison ops methods.""" | |
def _compare_other(self, ser: pd.Series, data, op, other): | |
if op.__name__ in ["eq", "ne"]: | |
# comparison should match point-wise comparisons | |
result = op(ser, other) | |
expected = ser.combine(other, op) | |
expected = self._cast_pointwise_result(op.__name__, ser, other, expected) | |
tm.assert_series_equal(result, expected) | |
else: | |
exc = None | |
try: | |
result = op(ser, other) | |
except Exception as err: | |
exc = err | |
if exc is None: | |
# Didn't error, then should match pointwise behavior | |
expected = ser.combine(other, op) | |
expected = self._cast_pointwise_result( | |
op.__name__, ser, other, expected | |
) | |
tm.assert_series_equal(result, expected) | |
else: | |
with pytest.raises(type(exc)): | |
ser.combine(other, op) | |
def test_compare_scalar(self, data, comparison_op): | |
ser = pd.Series(data) | |
self._compare_other(ser, data, comparison_op, 0) | |
def test_compare_array(self, data, comparison_op): | |
ser = pd.Series(data) | |
other = pd.Series([data[0]] * len(data), dtype=data.dtype) | |
self._compare_other(ser, data, comparison_op, other) | |
class BaseUnaryOpsTests(BaseOpsUtil): | |
def test_invert(self, data): | |
ser = pd.Series(data, name="name") | |
try: | |
# 10 is an arbitrary choice here, just avoid iterating over | |
# the whole array to trim test runtime | |
[~x for x in data[:10]] | |
except TypeError: | |
# scalars don't support invert -> we don't expect the vectorized | |
# operation to succeed | |
with pytest.raises(TypeError): | |
~ser | |
with pytest.raises(TypeError): | |
~data | |
else: | |
# Note we do not reuse the pointwise result to construct expected | |
# because python semantics for negating bools are weird see GH#54569 | |
result = ~ser | |
expected = pd.Series(~data, name="name") | |
tm.assert_series_equal(result, expected) | |
def test_unary_ufunc_dunder_equivalence(self, data, ufunc): | |
# the dunder __pos__ works if and only if np.positive works, | |
# same for __neg__/np.negative and __abs__/np.abs | |
attr = {np.positive: "__pos__", np.negative: "__neg__", np.abs: "__abs__"}[ | |
ufunc | |
] | |
exc = None | |
try: | |
result = getattr(data, attr)() | |
except Exception as err: | |
exc = err | |
# if __pos__ raised, then so should the ufunc | |
with pytest.raises((type(exc), TypeError)): | |
ufunc(data) | |
else: | |
alt = ufunc(data) | |
tm.assert_extension_array_equal(result, alt) | |