peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/base
/reduce.py
from typing import final | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.api.types import is_numeric_dtype | |
class BaseReduceTests: | |
""" | |
Reduction specific tests. Generally these only | |
make sense for numeric/boolean operations. | |
""" | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
# Specify if we expect this reduction to succeed. | |
return False | |
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool): | |
# We perform the same operation on the np.float64 data and check | |
# that the results match. Override if you need to cast to something | |
# other than float64. | |
res_op = getattr(ser, op_name) | |
try: | |
alt = ser.astype("float64") | |
except (TypeError, ValueError): | |
# e.g. Interval can't cast (TypeError), StringArray can't cast | |
# (ValueError), so let's cast to object and do | |
# the reduction pointwise | |
alt = ser.astype(object) | |
exp_op = getattr(alt, op_name) | |
if op_name == "count": | |
result = res_op() | |
expected = exp_op() | |
else: | |
result = res_op(skipna=skipna) | |
expected = exp_op(skipna=skipna) | |
tm.assert_almost_equal(result, expected) | |
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool): | |
# Find the expected dtype when the given reduction is done on a DataFrame | |
# column with this array. The default assumes float64-like behavior, | |
# i.e. retains the dtype. | |
return arr.dtype | |
# We anticipate that authors should not need to override check_reduce_frame, | |
# but should be able to do any necessary overriding in | |
# _get_expected_reduction_dtype. If you have a use case where this | |
# does not hold, please let us know at github.com/pandas-dev/pandas/issues. | |
def check_reduce_frame(self, ser: pd.Series, op_name: str, skipna: bool): | |
# Check that the 2D reduction done in a DataFrame reduction "looks like" | |
# a wrapped version of the 1D reduction done by Series. | |
arr = ser.array | |
df = pd.DataFrame({"a": arr}) | |
kwargs = {"ddof": 1} if op_name in ["var", "std"] else {} | |
cmp_dtype = self._get_expected_reduction_dtype(arr, op_name, skipna) | |
# The DataFrame method just calls arr._reduce with keepdims=True, | |
# so this first check is perfunctory. | |
result1 = arr._reduce(op_name, skipna=skipna, keepdims=True, **kwargs) | |
result2 = getattr(df, op_name)(skipna=skipna, **kwargs).array | |
tm.assert_extension_array_equal(result1, result2) | |
# Check that the 2D reduction looks like a wrapped version of the | |
# 1D reduction | |
if not skipna and ser.isna().any(): | |
expected = pd.array([pd.NA], dtype=cmp_dtype) | |
else: | |
exp_value = getattr(ser.dropna(), op_name)() | |
expected = pd.array([exp_value], dtype=cmp_dtype) | |
tm.assert_extension_array_equal(result1, expected) | |
def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna): | |
op_name = all_boolean_reductions | |
ser = pd.Series(data) | |
if not self._supports_reduction(ser, op_name): | |
# TODO: the message being checked here isn't actually checking anything | |
msg = ( | |
"[Cc]annot perform|Categorical is not ordered for operation|" | |
"does not support reduction|" | |
) | |
with pytest.raises(TypeError, match=msg): | |
getattr(ser, op_name)(skipna=skipna) | |
else: | |
self.check_reduce(ser, op_name, skipna) | |
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna): | |
op_name = all_numeric_reductions | |
ser = pd.Series(data) | |
if not self._supports_reduction(ser, op_name): | |
# TODO: the message being checked here isn't actually checking anything | |
msg = ( | |
"[Cc]annot perform|Categorical is not ordered for operation|" | |
"does not support reduction|" | |
) | |
with pytest.raises(TypeError, match=msg): | |
getattr(ser, op_name)(skipna=skipna) | |
else: | |
# min/max with empty produce numpy warnings | |
self.check_reduce(ser, op_name, skipna) | |
def test_reduce_frame(self, data, all_numeric_reductions, skipna): | |
op_name = all_numeric_reductions | |
ser = pd.Series(data) | |
if not is_numeric_dtype(ser.dtype): | |
pytest.skip(f"{ser.dtype} is not numeric dtype") | |
if op_name in ["count", "kurt", "sem"]: | |
pytest.skip(f"{op_name} not an array method") | |
if not self._supports_reduction(ser, op_name): | |
pytest.skip(f"Reduction {op_name} not supported for this dtype") | |
self.check_reduce_frame(ser, op_name, skipna) | |
# TODO(3.0): remove BaseNoReduceTests, BaseNumericReduceTests, | |
# BaseBooleanReduceTests | |
class BaseNoReduceTests(BaseReduceTests): | |
"""we don't define any reductions""" | |
class BaseNumericReduceTests(BaseReduceTests): | |
# For backward compatibility only, this only runs the numeric reductions | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
if op_name in ["any", "all"]: | |
pytest.skip("These are tested in BaseBooleanReduceTests") | |
return True | |
class BaseBooleanReduceTests(BaseReduceTests): | |
# For backward compatibility only, this only runs the numeric reductions | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
if op_name not in ["any", "all"]: | |
pytest.skip("These are tested in BaseNumericReduceTests") | |
return True | |