peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/conftest.py
import operator | |
import pytest | |
from pandas._config.config import _get_option | |
from pandas import ( | |
Series, | |
options, | |
) | |
def dtype(): | |
"""A fixture providing the ExtensionDtype to validate.""" | |
raise NotImplementedError | |
def data(): | |
""" | |
Length-100 array for this type. | |
* data[0] and data[1] should both be non missing | |
* data[0] and data[1] should not be equal | |
""" | |
raise NotImplementedError | |
def data_for_twos(dtype): | |
""" | |
Length-100 array in which all the elements are two. | |
Call pytest.skip in your fixture if the dtype does not support divmod. | |
""" | |
if not (dtype._is_numeric or dtype.kind == "m"): | |
# Object-dtypes may want to allow this, but for the most part | |
# only numeric and timedelta-like dtypes will need to implement this. | |
pytest.skip(f"{dtype} is not a numeric dtype") | |
raise NotImplementedError | |
def data_missing(): | |
"""Length-2 array with [NA, Valid]""" | |
raise NotImplementedError | |
def all_data(request, data, data_missing): | |
"""Parametrized fixture giving 'data' and 'data_missing'""" | |
if request.param == "data": | |
return data | |
elif request.param == "data_missing": | |
return data_missing | |
def data_repeated(data): | |
""" | |
Generate many datasets. | |
Parameters | |
---------- | |
data : fixture implementing `data` | |
Returns | |
------- | |
Callable[[int], Generator]: | |
A callable that takes a `count` argument and | |
returns a generator yielding `count` datasets. | |
""" | |
def gen(count): | |
for _ in range(count): | |
yield data | |
return gen | |
def data_for_sorting(): | |
""" | |
Length-3 array with a known sort order. | |
This should be three items [B, C, A] with | |
A < B < C | |
For boolean dtypes (for which there are only 2 values available), | |
set B=C=True | |
""" | |
raise NotImplementedError | |
def data_missing_for_sorting(): | |
""" | |
Length-3 array with a known sort order. | |
This should be three items [B, NA, A] with | |
A < B and NA missing. | |
""" | |
raise NotImplementedError | |
def na_cmp(): | |
""" | |
Binary operator for comparing NA values. | |
Should return a function of two arguments that returns | |
True if both arguments are (scalar) NA for your type. | |
By default, uses ``operator.is_`` | |
""" | |
return operator.is_ | |
def na_value(dtype): | |
""" | |
The scalar missing value for this type. Default dtype.na_value. | |
TODO: can be removed in 3.x (see https://github.com/pandas-dev/pandas/pull/54930) | |
""" | |
return dtype.na_value | |
def data_for_grouping(): | |
""" | |
Data for factorization, grouping, and unique tests. | |
Expected to be like [B, B, NA, NA, A, A, B, C] | |
Where A < B < C and NA is missing. | |
If a dtype has _is_boolean = True, i.e. only 2 unique non-NA entries, | |
then set C=B. | |
""" | |
raise NotImplementedError | |
def box_in_series(request): | |
"""Whether to box the data in a Series""" | |
return request.param | |
def groupby_apply_op(request): | |
""" | |
Functions to test groupby.apply(). | |
""" | |
return request.param | |
def as_frame(request): | |
""" | |
Boolean fixture to support Series and Series.to_frame() comparison testing. | |
""" | |
return request.param | |
def as_series(request): | |
""" | |
Boolean fixture to support arr and Series(arr) comparison testing. | |
""" | |
return request.param | |
def use_numpy(request): | |
""" | |
Boolean fixture to support comparison testing of ExtensionDtype array | |
and numpy array. | |
""" | |
return request.param | |
def fillna_method(request): | |
""" | |
Parametrized fixture giving method parameters 'ffill' and 'bfill' for | |
Series.fillna(method=<method>) testing. | |
""" | |
return request.param | |
def as_array(request): | |
""" | |
Boolean fixture to support ExtensionDtype _from_sequence method testing. | |
""" | |
return request.param | |
def invalid_scalar(data): | |
""" | |
A scalar that *cannot* be held by this ExtensionArray. | |
The default should work for most subclasses, but is not guaranteed. | |
If the array can hold any item (i.e. object dtype), then use pytest.skip. | |
""" | |
return object.__new__(object) | |
def using_copy_on_write() -> bool: | |
""" | |
Fixture to check if Copy-on-Write is enabled. | |
""" | |
return ( | |
options.mode.copy_on_write is True | |
and _get_option("mode.data_manager", silent=True) == "block" | |
) | |