peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/date
/array.py
from __future__ import annotations | |
import datetime as dt | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
cast, | |
) | |
import numpy as np | |
from pandas.core.dtypes.dtypes import register_extension_dtype | |
from pandas.api.extensions import ( | |
ExtensionArray, | |
ExtensionDtype, | |
) | |
from pandas.api.types import pandas_dtype | |
if TYPE_CHECKING: | |
from collections.abc import Sequence | |
from pandas._typing import ( | |
Dtype, | |
PositionalIndexer, | |
) | |
class DateDtype(ExtensionDtype): | |
def type(self): | |
return dt.date | |
def name(self): | |
return "DateDtype" | |
def construct_from_string(cls, string: str): | |
if not isinstance(string, str): | |
raise TypeError( | |
f"'construct_from_string' expects a string, got {type(string)}" | |
) | |
if string == cls.__name__: | |
return cls() | |
else: | |
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'") | |
def construct_array_type(cls): | |
return DateArray | |
def na_value(self): | |
return dt.date.min | |
def __repr__(self) -> str: | |
return self.name | |
class DateArray(ExtensionArray): | |
def __init__( | |
self, | |
dates: ( | |
dt.date | |
| Sequence[dt.date] | |
| tuple[np.ndarray, np.ndarray, np.ndarray] | |
| np.ndarray | |
), | |
) -> None: | |
if isinstance(dates, dt.date): | |
self._year = np.array([dates.year]) | |
self._month = np.array([dates.month]) | |
self._day = np.array([dates.year]) | |
return | |
ldates = len(dates) | |
if isinstance(dates, list): | |
# pre-allocate the arrays since we know the size before hand | |
self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999) | |
self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31) | |
self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12) | |
# populate them | |
for i, (y, m, d) in enumerate( | |
(date.year, date.month, date.day) for date in dates | |
): | |
self._year[i] = y | |
self._month[i] = m | |
self._day[i] = d | |
elif isinstance(dates, tuple): | |
# only support triples | |
if ldates != 3: | |
raise ValueError("only triples are valid") | |
# check if all elements have the same type | |
if any(not isinstance(x, np.ndarray) for x in dates): | |
raise TypeError("invalid type") | |
ly, lm, ld = (len(cast(np.ndarray, d)) for d in dates) | |
if not ly == lm == ld: | |
raise ValueError( | |
f"tuple members must have the same length: {(ly, lm, ld)}" | |
) | |
self._year = dates[0].astype(np.uint16) | |
self._month = dates[1].astype(np.uint8) | |
self._day = dates[2].astype(np.uint8) | |
elif isinstance(dates, np.ndarray) and dates.dtype == "U10": | |
self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999) | |
self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31) | |
self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12) | |
# error: "object_" object is not iterable | |
obj = np.char.split(dates, sep="-") | |
for (i,), (y, m, d) in np.ndenumerate(obj): # type: ignore[misc] | |
self._year[i] = int(y) | |
self._month[i] = int(m) | |
self._day[i] = int(d) | |
else: | |
raise TypeError(f"{type(dates)} is not supported") | |
def dtype(self) -> ExtensionDtype: | |
return DateDtype() | |
def astype(self, dtype, copy=True): | |
dtype = pandas_dtype(dtype) | |
if isinstance(dtype, DateDtype): | |
data = self.copy() if copy else self | |
else: | |
data = self.to_numpy(dtype=dtype, copy=copy, na_value=dt.date.min) | |
return data | |
def nbytes(self) -> int: | |
return self._year.nbytes + self._month.nbytes + self._day.nbytes | |
def __len__(self) -> int: | |
return len(self._year) # all 3 arrays are enforced to have the same length | |
def __getitem__(self, item: PositionalIndexer): | |
if isinstance(item, int): | |
return dt.date(self._year[item], self._month[item], self._day[item]) | |
else: | |
raise NotImplementedError("only ints are supported as indexes") | |
def __setitem__(self, key: int | slice | np.ndarray, value: Any) -> None: | |
if not isinstance(key, int): | |
raise NotImplementedError("only ints are supported as indexes") | |
if not isinstance(value, dt.date): | |
raise TypeError("you can only set datetime.date types") | |
self._year[key] = value.year | |
self._month[key] = value.month | |
self._day[key] = value.day | |
def __repr__(self) -> str: | |
return f"DateArray{list(zip(self._year, self._month, self._day))}" | |
def copy(self) -> DateArray: | |
return DateArray((self._year.copy(), self._month.copy(), self._day.copy())) | |
def isna(self) -> np.ndarray: | |
return np.logical_and( | |
np.logical_and( | |
self._year == dt.date.min.year, self._month == dt.date.min.month | |
), | |
self._day == dt.date.min.day, | |
) | |
def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy=False): | |
if isinstance(scalars, dt.date): | |
raise TypeError | |
elif isinstance(scalars, DateArray): | |
if dtype is not None: | |
return scalars.astype(dtype, copy=copy) | |
if copy: | |
return scalars.copy() | |
return scalars[:] | |
elif isinstance(scalars, np.ndarray): | |
scalars = scalars.astype("U10") # 10 chars for yyyy-mm-dd | |
return DateArray(scalars) | |