peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/decimal
/array.py
from __future__ import annotations | |
import decimal | |
import numbers | |
import sys | |
from typing import TYPE_CHECKING | |
import numpy as np | |
from pandas.core.dtypes.base import ExtensionDtype | |
from pandas.core.dtypes.common import ( | |
is_dtype_equal, | |
is_float, | |
is_integer, | |
pandas_dtype, | |
) | |
import pandas as pd | |
from pandas.api.extensions import ( | |
no_default, | |
register_extension_dtype, | |
) | |
from pandas.api.types import ( | |
is_list_like, | |
is_scalar, | |
) | |
from pandas.core import arraylike | |
from pandas.core.algorithms import value_counts_internal as value_counts | |
from pandas.core.arraylike import OpsMixin | |
from pandas.core.arrays import ( | |
ExtensionArray, | |
ExtensionScalarOpsMixin, | |
) | |
from pandas.core.indexers import check_array_indexer | |
if TYPE_CHECKING: | |
from pandas._typing import type_t | |
class DecimalDtype(ExtensionDtype): | |
type = decimal.Decimal | |
name = "decimal" | |
na_value = decimal.Decimal("NaN") | |
_metadata = ("context",) | |
def __init__(self, context=None) -> None: | |
self.context = context or decimal.getcontext() | |
def __repr__(self) -> str: | |
return f"DecimalDtype(context={self.context})" | |
def construct_array_type(cls) -> type_t[DecimalArray]: | |
""" | |
Return the array type associated with this dtype. | |
Returns | |
------- | |
type | |
""" | |
return DecimalArray | |
def _is_numeric(self) -> bool: | |
return True | |
class DecimalArray(OpsMixin, ExtensionScalarOpsMixin, ExtensionArray): | |
__array_priority__ = 1000 | |
def __init__(self, values, dtype=None, copy=False, context=None) -> None: | |
for i, val in enumerate(values): | |
if is_float(val) or is_integer(val): | |
if np.isnan(val): | |
values[i] = DecimalDtype.na_value | |
else: | |
# error: Argument 1 has incompatible type "float | int | | |
# integer[Any]"; expected "Decimal | float | str | tuple[int, | |
# Sequence[int], int]" | |
values[i] = DecimalDtype.type(val) # type: ignore[arg-type] | |
elif not isinstance(val, decimal.Decimal): | |
raise TypeError("All values must be of type " + str(decimal.Decimal)) | |
values = np.asarray(values, dtype=object) | |
self._data = values | |
# Some aliases for common attribute names to ensure pandas supports | |
# these | |
self._items = self.data = self._data | |
# those aliases are currently not working due to assumptions | |
# in internal code (GH-20735) | |
# self._values = self.values = self.data | |
self._dtype = DecimalDtype(context) | |
def dtype(self): | |
return self._dtype | |
def _from_sequence(cls, scalars, *, dtype=None, copy=False): | |
return cls(scalars) | |
def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): | |
return cls._from_sequence( | |
[decimal.Decimal(x) for x in strings], dtype=dtype, copy=copy | |
) | |
def _from_factorized(cls, values, original): | |
return cls(values) | |
_HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray) | |
def to_numpy( | |
self, | |
dtype=None, | |
copy: bool = False, | |
na_value: object = no_default, | |
decimals=None, | |
) -> np.ndarray: | |
result = np.asarray(self, dtype=dtype) | |
if decimals is not None: | |
result = np.asarray([round(x, decimals) for x in result]) | |
return result | |
def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs): | |
# | |
if not all( | |
isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs | |
): | |
return NotImplemented | |
result = arraylike.maybe_dispatch_ufunc_to_dunder_op( | |
self, ufunc, method, *inputs, **kwargs | |
) | |
if result is not NotImplemented: | |
# e.g. test_array_ufunc_series_scalar_other | |
return result | |
if "out" in kwargs: | |
return arraylike.dispatch_ufunc_with_out( | |
self, ufunc, method, *inputs, **kwargs | |
) | |
inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs) | |
result = getattr(ufunc, method)(*inputs, **kwargs) | |
if method == "reduce": | |
result = arraylike.dispatch_reduction_ufunc( | |
self, ufunc, method, *inputs, **kwargs | |
) | |
if result is not NotImplemented: | |
return result | |
def reconstruct(x): | |
if isinstance(x, (decimal.Decimal, numbers.Number)): | |
return x | |
else: | |
return type(self)._from_sequence(x, dtype=self.dtype) | |
if ufunc.nout > 1: | |
return tuple(reconstruct(x) for x in result) | |
else: | |
return reconstruct(result) | |
def __getitem__(self, item): | |
if isinstance(item, numbers.Integral): | |
return self._data[item] | |
else: | |
# array, slice. | |
item = pd.api.indexers.check_array_indexer(self, item) | |
return type(self)(self._data[item]) | |
def take(self, indexer, allow_fill=False, fill_value=None): | |
from pandas.api.extensions import take | |
data = self._data | |
if allow_fill and fill_value is None: | |
fill_value = self.dtype.na_value | |
result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill) | |
return self._from_sequence(result, dtype=self.dtype) | |
def copy(self): | |
return type(self)(self._data.copy(), dtype=self.dtype) | |
def astype(self, dtype, copy=True): | |
if is_dtype_equal(dtype, self._dtype): | |
if not copy: | |
return self | |
dtype = pandas_dtype(dtype) | |
if isinstance(dtype, type(self.dtype)): | |
return type(self)(self._data, copy=copy, context=dtype.context) | |
return super().astype(dtype, copy=copy) | |
def __setitem__(self, key, value) -> None: | |
if is_list_like(value): | |
if is_scalar(key): | |
raise ValueError("setting an array element with a sequence.") | |
value = [decimal.Decimal(v) for v in value] | |
else: | |
value = decimal.Decimal(value) | |
key = check_array_indexer(self, key) | |
self._data[key] = value | |
def __len__(self) -> int: | |
return len(self._data) | |
def __contains__(self, item) -> bool | np.bool_: | |
if not isinstance(item, decimal.Decimal): | |
return False | |
elif item.is_nan(): | |
return self.isna().any() | |
else: | |
return super().__contains__(item) | |
def nbytes(self) -> int: | |
n = len(self) | |
if n: | |
return n * sys.getsizeof(self[0]) | |
return 0 | |
def isna(self): | |
return np.array([x.is_nan() for x in self._data], dtype=bool) | |
def _na_value(self): | |
return decimal.Decimal("NaN") | |
def _formatter(self, boxed=False): | |
if boxed: | |
return "Decimal: {}".format | |
return repr | |
def _concat_same_type(cls, to_concat): | |
return cls(np.concatenate([x._data for x in to_concat])) | |
def _reduce( | |
self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs | |
): | |
if skipna and self.isna().any(): | |
# If we don't have any NAs, we can ignore skipna | |
other = self[~self.isna()] | |
result = other._reduce(name, **kwargs) | |
elif name == "sum" and len(self) == 0: | |
# GH#29630 avoid returning int 0 or np.bool_(False) on old numpy | |
result = decimal.Decimal(0) | |
else: | |
try: | |
op = getattr(self.data, name) | |
except AttributeError as err: | |
raise NotImplementedError( | |
f"decimal does not support the {name} operation" | |
) from err | |
result = op(axis=0) | |
if keepdims: | |
return type(self)([result]) | |
else: | |
return result | |
def _cmp_method(self, other, op): | |
# For use with OpsMixin | |
def convert_values(param): | |
if isinstance(param, ExtensionArray) or is_list_like(param): | |
ovalues = param | |
else: | |
# Assume it's an object | |
ovalues = [param] * len(self) | |
return ovalues | |
lvalues = self | |
rvalues = convert_values(other) | |
# If the operator is not defined for the underlying objects, | |
# a TypeError should be raised | |
res = [op(a, b) for (a, b) in zip(lvalues, rvalues)] | |
return np.asarray(res, dtype=bool) | |
def value_counts(self, dropna: bool = True): | |
return value_counts(self.to_numpy(), dropna=dropna) | |
# We override fillna here to simulate a 3rd party EA that has done so. This | |
# lets us test the deprecation telling authors to implement _pad_or_backfill | |
# Simulate a 3rd-party EA that has not yet updated to include a "copy" | |
# keyword in its fillna method. | |
# error: Signature of "fillna" incompatible with supertype "ExtensionArray" | |
def fillna( # type: ignore[override] | |
self, | |
value=None, | |
method=None, | |
limit: int | None = None, | |
): | |
return super().fillna(value=value, method=method, limit=limit, copy=True) | |
def to_decimal(values, context=None): | |
return DecimalArray([decimal.Decimal(x) for x in values], context=context) | |
def make_data(): | |
return [decimal.Decimal(val) for val in np.random.default_rng(2).random(100)] | |
DecimalArray._add_arithmetic_ops() | |