peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/extension
/test_arrow.py
""" | |
This file contains a minimal set of tests for compliance with the extension | |
array interface test suite, and should contain no other tests. | |
The test suite for the full functionality of the array is located in | |
`pandas/tests/arrays/`. | |
The tests in this file are inherited from the BaseExtensionTests, and only | |
minimal tweaks should be applied to get the tests passing (by overwriting a | |
parent method). | |
Additional tests should either be added to one of the BaseExtensionTests | |
classes (if they are relevant for the extension interface for all dtypes), or | |
be added to the array-specific tests in `pandas/tests/arrays/`. | |
""" | |
from __future__ import annotations | |
from datetime import ( | |
date, | |
datetime, | |
time, | |
timedelta, | |
) | |
from decimal import Decimal | |
from io import ( | |
BytesIO, | |
StringIO, | |
) | |
import operator | |
import pickle | |
import re | |
import numpy as np | |
import pytest | |
from pandas._libs import lib | |
from pandas._libs.tslibs import timezones | |
from pandas.compat import ( | |
PY311, | |
PY312, | |
is_ci_environment, | |
is_platform_windows, | |
pa_version_under11p0, | |
pa_version_under13p0, | |
pa_version_under14p0, | |
) | |
import pandas.util._test_decorators as td | |
from pandas.core.dtypes.dtypes import ( | |
ArrowDtype, | |
CategoricalDtypeType, | |
) | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.api.extensions import no_default | |
from pandas.api.types import ( | |
is_bool_dtype, | |
is_float_dtype, | |
is_integer_dtype, | |
is_numeric_dtype, | |
is_signed_integer_dtype, | |
is_string_dtype, | |
is_unsigned_integer_dtype, | |
) | |
from pandas.tests.extension import base | |
pa = pytest.importorskip("pyarrow") | |
from pandas.core.arrays.arrow.array import ArrowExtensionArray | |
from pandas.core.arrays.arrow.extension_types import ArrowPeriodType | |
def _require_timezone_database(request): | |
if is_platform_windows() and is_ci_environment(): | |
mark = pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason=( | |
"TODO: Set ARROW_TIMEZONE_DATABASE environment variable " | |
"on CI to path to the tzdata for pyarrow." | |
), | |
) | |
request.applymarker(mark) | |
def dtype(request): | |
return ArrowDtype(pyarrow_dtype=request.param) | |
def data(dtype): | |
pa_dtype = dtype.pyarrow_dtype | |
if pa.types.is_boolean(pa_dtype): | |
data = [True, False] * 4 + [None] + [True, False] * 44 + [None] + [True, False] | |
elif pa.types.is_floating(pa_dtype): | |
data = [1.0, 0.0] * 4 + [None] + [-2.0, -1.0] * 44 + [None] + [0.5, 99.5] | |
elif pa.types.is_signed_integer(pa_dtype): | |
data = [1, 0] * 4 + [None] + [-2, -1] * 44 + [None] + [1, 99] | |
elif pa.types.is_unsigned_integer(pa_dtype): | |
data = [1, 0] * 4 + [None] + [2, 1] * 44 + [None] + [1, 99] | |
elif pa.types.is_decimal(pa_dtype): | |
data = ( | |
[Decimal("1"), Decimal("0.0")] * 4 | |
+ [None] | |
+ [Decimal("-2.0"), Decimal("-1.0")] * 44 | |
+ [None] | |
+ [Decimal("0.5"), Decimal("33.123")] | |
) | |
elif pa.types.is_date(pa_dtype): | |
data = ( | |
[date(2022, 1, 1), date(1999, 12, 31)] * 4 | |
+ [None] | |
+ [date(2022, 1, 1), date(2022, 1, 1)] * 44 | |
+ [None] | |
+ [date(1999, 12, 31), date(1999, 12, 31)] | |
) | |
elif pa.types.is_timestamp(pa_dtype): | |
data = ( | |
[datetime(2020, 1, 1, 1, 1, 1, 1), datetime(1999, 1, 1, 1, 1, 1, 1)] * 4 | |
+ [None] | |
+ [datetime(2020, 1, 1, 1), datetime(1999, 1, 1, 1)] * 44 | |
+ [None] | |
+ [datetime(2020, 1, 1), datetime(1999, 1, 1)] | |
) | |
elif pa.types.is_duration(pa_dtype): | |
data = ( | |
[timedelta(1), timedelta(1, 1)] * 4 | |
+ [None] | |
+ [timedelta(-1), timedelta(0)] * 44 | |
+ [None] | |
+ [timedelta(-10), timedelta(10)] | |
) | |
elif pa.types.is_time(pa_dtype): | |
data = ( | |
[time(12, 0), time(0, 12)] * 4 | |
+ [None] | |
+ [time(0, 0), time(1, 1)] * 44 | |
+ [None] | |
+ [time(0, 5), time(5, 0)] | |
) | |
elif pa.types.is_string(pa_dtype): | |
data = ["a", "b"] * 4 + [None] + ["1", "2"] * 44 + [None] + ["!", ">"] | |
elif pa.types.is_binary(pa_dtype): | |
data = [b"a", b"b"] * 4 + [None] + [b"1", b"2"] * 44 + [None] + [b"!", b">"] | |
else: | |
raise NotImplementedError | |
return pd.array(data, dtype=dtype) | |
def data_missing(data): | |
"""Length-2 array with [NA, Valid]""" | |
return type(data)._from_sequence([None, data[0]], dtype=data.dtype) | |
def all_data(request, data, data_missing): | |
"""Parametrized fixture returning 'data' or 'data_missing' integer arrays. | |
Used to test dtype conversion with and without missing values. | |
""" | |
if request.param == "data": | |
return data | |
elif request.param == "data_missing": | |
return data_missing | |
def data_for_grouping(dtype): | |
""" | |
Data for factorization, grouping, and unique tests. | |
Expected to be like [B, B, NA, NA, A, A, B, C] | |
Where A < B < C and NA is missing | |
""" | |
pa_dtype = dtype.pyarrow_dtype | |
if pa.types.is_boolean(pa_dtype): | |
A = False | |
B = True | |
C = True | |
elif pa.types.is_floating(pa_dtype): | |
A = -1.1 | |
B = 0.0 | |
C = 1.1 | |
elif pa.types.is_signed_integer(pa_dtype): | |
A = -1 | |
B = 0 | |
C = 1 | |
elif pa.types.is_unsigned_integer(pa_dtype): | |
A = 0 | |
B = 1 | |
C = 10 | |
elif pa.types.is_date(pa_dtype): | |
A = date(1999, 12, 31) | |
B = date(2010, 1, 1) | |
C = date(2022, 1, 1) | |
elif pa.types.is_timestamp(pa_dtype): | |
A = datetime(1999, 1, 1, 1, 1, 1, 1) | |
B = datetime(2020, 1, 1) | |
C = datetime(2020, 1, 1, 1) | |
elif pa.types.is_duration(pa_dtype): | |
A = timedelta(-1) | |
B = timedelta(0) | |
C = timedelta(1, 4) | |
elif pa.types.is_time(pa_dtype): | |
A = time(0, 0) | |
B = time(0, 12) | |
C = time(12, 12) | |
elif pa.types.is_string(pa_dtype): | |
A = "a" | |
B = "b" | |
C = "c" | |
elif pa.types.is_binary(pa_dtype): | |
A = b"a" | |
B = b"b" | |
C = b"c" | |
elif pa.types.is_decimal(pa_dtype): | |
A = Decimal("-1.1") | |
B = Decimal("0.0") | |
C = Decimal("1.1") | |
else: | |
raise NotImplementedError | |
return pd.array([B, B, None, None, A, A, B, C], dtype=dtype) | |
def data_for_sorting(data_for_grouping): | |
""" | |
Length-3 array with a known sort order. | |
This should be three items [B, C, A] with | |
A < B < C | |
""" | |
return type(data_for_grouping)._from_sequence( | |
[data_for_grouping[0], data_for_grouping[7], data_for_grouping[4]], | |
dtype=data_for_grouping.dtype, | |
) | |
def data_missing_for_sorting(data_for_grouping): | |
""" | |
Length-3 array with a known sort order. | |
This should be three items [B, NA, A] with | |
A < B and NA missing. | |
""" | |
return type(data_for_grouping)._from_sequence( | |
[data_for_grouping[0], data_for_grouping[2], data_for_grouping[4]], | |
dtype=data_for_grouping.dtype, | |
) | |
def data_for_twos(data): | |
"""Length-100 array in which all the elements are two.""" | |
pa_dtype = data.dtype.pyarrow_dtype | |
if ( | |
pa.types.is_integer(pa_dtype) | |
or pa.types.is_floating(pa_dtype) | |
or pa.types.is_decimal(pa_dtype) | |
or pa.types.is_duration(pa_dtype) | |
): | |
return pd.array([2] * 100, dtype=data.dtype) | |
# tests will be xfailed where 2 is not a valid scalar for pa_dtype | |
return data | |
# TODO: skip otherwise? | |
class TestArrowArray(base.ExtensionTests): | |
def test_compare_scalar(self, data, comparison_op): | |
ser = pd.Series(data) | |
self._compare_other(ser, data, comparison_op, data[0]) | |
def test_map(self, data_missing, na_action): | |
if data_missing.dtype.kind in "mM": | |
result = data_missing.map(lambda x: x, na_action=na_action) | |
expected = data_missing.to_numpy(dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
else: | |
result = data_missing.map(lambda x: x, na_action=na_action) | |
if data_missing.dtype == "float32[pyarrow]": | |
# map roundtrips through objects, which converts to float64 | |
expected = data_missing.to_numpy(dtype="float64", na_value=np.nan) | |
else: | |
expected = data_missing.to_numpy() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_astype_str(self, data, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if pa.types.is_binary(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"For {pa_dtype} .astype(str) decodes.", | |
) | |
) | |
elif ( | |
pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is None | |
) or pa.types.is_duration(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="pd.Timestamp/pd.Timedelta repr different from numpy repr", | |
) | |
) | |
super().test_astype_str(data) | |
def test_astype_string(self, data, nullable_string_dtype, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if ( | |
pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is None | |
) or pa.types.is_duration(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="pd.Timestamp/pd.Timedelta repr different from numpy repr", | |
) | |
) | |
super().test_astype_string(data, nullable_string_dtype) | |
def test_from_dtype(self, data, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if pa.types.is_string(pa_dtype) or pa.types.is_decimal(pa_dtype): | |
if pa.types.is_string(pa_dtype): | |
reason = "ArrowDtype(pa.string()) != StringDtype('pyarrow')" | |
else: | |
reason = f"pyarrow.type_for_alias cannot infer {pa_dtype}" | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=reason, | |
) | |
) | |
super().test_from_dtype(data) | |
def test_from_sequence_pa_array(self, data): | |
# https://github.com/pandas-dev/pandas/pull/47034#discussion_r955500784 | |
# data._pa_array = pa.ChunkedArray | |
result = type(data)._from_sequence(data._pa_array, dtype=data.dtype) | |
tm.assert_extension_array_equal(result, data) | |
assert isinstance(result._pa_array, pa.ChunkedArray) | |
result = type(data)._from_sequence( | |
data._pa_array.combine_chunks(), dtype=data.dtype | |
) | |
tm.assert_extension_array_equal(result, data) | |
assert isinstance(result._pa_array, pa.ChunkedArray) | |
def test_from_sequence_pa_array_notimplemented(self, request): | |
with pytest.raises(NotImplementedError, match="Converting strings to"): | |
ArrowExtensionArray._from_sequence_of_strings( | |
["12-1"], dtype=pa.month_day_nano_interval() | |
) | |
def test_from_sequence_of_strings_pa_array(self, data, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if pa.types.is_time64(pa_dtype) and pa_dtype.equals("time64[ns]") and not PY311: | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="Nanosecond time parsing not supported.", | |
) | |
) | |
elif pa_version_under11p0 and ( | |
pa.types.is_duration(pa_dtype) or pa.types.is_decimal(pa_dtype) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=pa.ArrowNotImplementedError, | |
reason=f"pyarrow doesn't support parsing {pa_dtype}", | |
) | |
) | |
elif pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is not None: | |
_require_timezone_database(request) | |
pa_array = data._pa_array.cast(pa.string()) | |
result = type(data)._from_sequence_of_strings(pa_array, dtype=data.dtype) | |
tm.assert_extension_array_equal(result, data) | |
pa_array = pa_array.combine_chunks() | |
result = type(data)._from_sequence_of_strings(pa_array, dtype=data.dtype) | |
tm.assert_extension_array_equal(result, data) | |
def check_accumulate(self, ser, op_name, skipna): | |
result = getattr(ser, op_name)(skipna=skipna) | |
pa_type = ser.dtype.pyarrow_dtype | |
if pa.types.is_temporal(pa_type): | |
# Just check that we match the integer behavior. | |
if pa_type.bit_width == 32: | |
int_type = "int32[pyarrow]" | |
else: | |
int_type = "int64[pyarrow]" | |
ser = ser.astype(int_type) | |
result = result.astype(int_type) | |
result = result.astype("Float64") | |
expected = getattr(ser.astype("Float64"), op_name)(skipna=skipna) | |
tm.assert_series_equal(result, expected, check_dtype=False) | |
def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool: | |
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no | |
# attribute "pyarrow_dtype" | |
pa_type = ser.dtype.pyarrow_dtype # type: ignore[union-attr] | |
if ( | |
pa.types.is_string(pa_type) | |
or pa.types.is_binary(pa_type) | |
or pa.types.is_decimal(pa_type) | |
): | |
if op_name in ["cumsum", "cumprod", "cummax", "cummin"]: | |
return False | |
elif pa.types.is_boolean(pa_type): | |
if op_name in ["cumprod", "cummax", "cummin"]: | |
return False | |
elif pa.types.is_temporal(pa_type): | |
if op_name == "cumsum" and not pa.types.is_duration(pa_type): | |
return False | |
elif op_name == "cumprod": | |
return False | |
return True | |
def test_accumulate_series(self, data, all_numeric_accumulations, skipna, request): | |
pa_type = data.dtype.pyarrow_dtype | |
op_name = all_numeric_accumulations | |
ser = pd.Series(data) | |
if not self._supports_accumulation(ser, op_name): | |
# The base class test will check that we raise | |
return super().test_accumulate_series( | |
data, all_numeric_accumulations, skipna | |
) | |
if pa_version_under13p0 and all_numeric_accumulations != "cumsum": | |
# xfailing takes a long time to run because pytest | |
# renders the exception messages even when not showing them | |
opt = request.config.option | |
if opt.markexpr and "not slow" in opt.markexpr: | |
pytest.skip( | |
f"{all_numeric_accumulations} not implemented for pyarrow < 9" | |
) | |
mark = pytest.mark.xfail( | |
reason=f"{all_numeric_accumulations} not implemented for pyarrow < 9" | |
) | |
request.applymarker(mark) | |
elif all_numeric_accumulations == "cumsum" and ( | |
pa.types.is_boolean(pa_type) or pa.types.is_decimal(pa_type) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=f"{all_numeric_accumulations} not implemented for {pa_type}", | |
raises=NotImplementedError, | |
) | |
) | |
self.check_accumulate(ser, op_name, skipna) | |
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: | |
dtype = ser.dtype | |
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has | |
# no attribute "pyarrow_dtype" | |
pa_dtype = dtype.pyarrow_dtype # type: ignore[union-attr] | |
if pa.types.is_temporal(pa_dtype) and op_name in [ | |
"sum", | |
"var", | |
"skew", | |
"kurt", | |
"prod", | |
]: | |
if pa.types.is_duration(pa_dtype) and op_name in ["sum"]: | |
# summing timedeltas is one case that *is* well-defined | |
pass | |
else: | |
return False | |
elif ( | |
pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) | |
) and op_name in [ | |
"sum", | |
"mean", | |
"median", | |
"prod", | |
"std", | |
"sem", | |
"var", | |
"skew", | |
"kurt", | |
]: | |
return False | |
if ( | |
pa.types.is_temporal(pa_dtype) | |
and not pa.types.is_duration(pa_dtype) | |
and op_name in ["any", "all"] | |
): | |
# xref GH#34479 we support this in our non-pyarrow datetime64 dtypes, | |
# but it isn't obvious we _should_. For now, we keep the pyarrow | |
# behavior which does not support this. | |
return False | |
return True | |
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool): | |
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no | |
# attribute "pyarrow_dtype" | |
pa_dtype = ser.dtype.pyarrow_dtype # type: ignore[union-attr] | |
if pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype): | |
alt = ser.astype("Float64") | |
else: | |
# TODO: in the opposite case, aren't we testing... nothing? For | |
# e.g. date/time dtypes trying to calculate 'expected' by converting | |
# to object will raise for mean, std etc | |
alt = ser | |
# TODO: in the opposite case, aren't we testing... nothing? | |
if op_name == "count": | |
result = getattr(ser, op_name)() | |
expected = getattr(alt, op_name)() | |
else: | |
result = getattr(ser, op_name)(skipna=skipna) | |
expected = getattr(alt, op_name)(skipna=skipna) | |
tm.assert_almost_equal(result, expected) | |
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request): | |
dtype = data.dtype | |
pa_dtype = dtype.pyarrow_dtype | |
xfail_mark = pytest.mark.xfail( | |
raises=TypeError, | |
reason=( | |
f"{all_numeric_reductions} is not implemented in " | |
f"pyarrow={pa.__version__} for {pa_dtype}" | |
), | |
) | |
if all_numeric_reductions in {"skew", "kurt"} and ( | |
dtype._is_numeric or dtype.kind == "b" | |
): | |
request.applymarker(xfail_mark) | |
elif pa.types.is_boolean(pa_dtype) and all_numeric_reductions in { | |
"sem", | |
"std", | |
"var", | |
"median", | |
}: | |
request.applymarker(xfail_mark) | |
super().test_reduce_series_numeric(data, all_numeric_reductions, skipna) | |
def test_reduce_series_boolean( | |
self, data, all_boolean_reductions, skipna, na_value, request | |
): | |
pa_dtype = data.dtype.pyarrow_dtype | |
xfail_mark = pytest.mark.xfail( | |
raises=TypeError, | |
reason=( | |
f"{all_boolean_reductions} is not implemented in " | |
f"pyarrow={pa.__version__} for {pa_dtype}" | |
), | |
) | |
if pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype): | |
# We *might* want to make this behave like the non-pyarrow cases, | |
# but have not yet decided. | |
request.applymarker(xfail_mark) | |
return super().test_reduce_series_boolean(data, all_boolean_reductions, skipna) | |
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool): | |
if op_name in ["max", "min"]: | |
cmp_dtype = arr.dtype | |
elif arr.dtype.name == "decimal128(7, 3)[pyarrow]": | |
if op_name not in ["median", "var", "std"]: | |
cmp_dtype = arr.dtype | |
else: | |
cmp_dtype = "float64[pyarrow]" | |
elif op_name in ["median", "var", "std", "mean", "skew"]: | |
cmp_dtype = "float64[pyarrow]" | |
else: | |
cmp_dtype = { | |
"i": "int64[pyarrow]", | |
"u": "uint64[pyarrow]", | |
"f": "float64[pyarrow]", | |
}[arr.dtype.kind] | |
return cmp_dtype | |
def test_reduce_frame(self, data, all_numeric_reductions, skipna, request): | |
op_name = all_numeric_reductions | |
if op_name == "skew": | |
if data.dtype._is_numeric: | |
mark = pytest.mark.xfail(reason="skew not implemented") | |
request.applymarker(mark) | |
return super().test_reduce_frame(data, all_numeric_reductions, skipna) | |
def test_median_not_approximate(self, typ): | |
# GH 52679 | |
result = pd.Series([1, 2], dtype=f"{typ}[pyarrow]").median() | |
assert result == 1.5 | |
def test_in_numeric_groupby(self, data_for_grouping): | |
dtype = data_for_grouping.dtype | |
if is_string_dtype(dtype): | |
df = pd.DataFrame( | |
{ | |
"A": [1, 1, 2, 2, 3, 3, 1, 4], | |
"B": data_for_grouping, | |
"C": [1, 1, 1, 1, 1, 1, 1, 1], | |
} | |
) | |
expected = pd.Index(["C"]) | |
msg = re.escape(f"agg function failed [how->sum,dtype->{dtype}") | |
with pytest.raises(TypeError, match=msg): | |
df.groupby("A").sum() | |
result = df.groupby("A").sum(numeric_only=True).columns | |
tm.assert_index_equal(result, expected) | |
else: | |
super().test_in_numeric_groupby(data_for_grouping) | |
def test_construct_from_string_own_name(self, dtype, request): | |
pa_dtype = dtype.pyarrow_dtype | |
if pa.types.is_decimal(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=NotImplementedError, | |
reason=f"pyarrow.type_for_alias cannot infer {pa_dtype}", | |
) | |
) | |
if pa.types.is_string(pa_dtype): | |
# We still support StringDtype('pyarrow') over ArrowDtype(pa.string()) | |
msg = r"string\[pyarrow\] should be constructed by StringDtype" | |
with pytest.raises(TypeError, match=msg): | |
dtype.construct_from_string(dtype.name) | |
return | |
super().test_construct_from_string_own_name(dtype) | |
def test_is_dtype_from_name(self, dtype, request): | |
pa_dtype = dtype.pyarrow_dtype | |
if pa.types.is_string(pa_dtype): | |
# We still support StringDtype('pyarrow') over ArrowDtype(pa.string()) | |
assert not type(dtype).is_dtype(dtype.name) | |
else: | |
if pa.types.is_decimal(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=NotImplementedError, | |
reason=f"pyarrow.type_for_alias cannot infer {pa_dtype}", | |
) | |
) | |
super().test_is_dtype_from_name(dtype) | |
def test_construct_from_string_another_type_raises(self, dtype): | |
msg = r"'another_type' must end with '\[pyarrow\]'" | |
with pytest.raises(TypeError, match=msg): | |
type(dtype).construct_from_string("another_type") | |
def test_get_common_dtype(self, dtype, request): | |
pa_dtype = dtype.pyarrow_dtype | |
if ( | |
pa.types.is_date(pa_dtype) | |
or pa.types.is_time(pa_dtype) | |
or (pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is not None) | |
or pa.types.is_binary(pa_dtype) | |
or pa.types.is_decimal(pa_dtype) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=( | |
f"{pa_dtype} does not have associated numpy " | |
f"dtype findable by find_common_type" | |
) | |
) | |
) | |
super().test_get_common_dtype(dtype) | |
def test_is_not_string_type(self, dtype): | |
pa_dtype = dtype.pyarrow_dtype | |
if pa.types.is_string(pa_dtype): | |
assert is_string_dtype(dtype) | |
else: | |
super().test_is_not_string_type(dtype) | |
def test_view(self, data): | |
super().test_view(data) | |
def test_fillna_no_op_returns_copy(self, data): | |
data = data[~data.isna()] | |
valid = data[0] | |
result = data.fillna(valid) | |
assert result is not data | |
tm.assert_extension_array_equal(result, data) | |
result = data.fillna(method="backfill") | |
assert result is not data | |
tm.assert_extension_array_equal(result, data) | |
def test_transpose(self, data): | |
super().test_transpose(data) | |
def test_setitem_preserves_views(self, data): | |
super().test_setitem_preserves_views(data) | |
def test_EA_types(self, engine, data, dtype_backend, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if pa.types.is_decimal(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=NotImplementedError, | |
reason=f"Parameterized types {pa_dtype} not supported.", | |
) | |
) | |
elif pa.types.is_timestamp(pa_dtype) and pa_dtype.unit in ("us", "ns"): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=ValueError, | |
reason="https://github.com/pandas-dev/pandas/issues/49767", | |
) | |
) | |
elif pa.types.is_binary(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail(reason="CSV parsers don't correctly handle binary") | |
) | |
df = pd.DataFrame({"with_dtype": pd.Series(data, dtype=str(data.dtype))}) | |
csv_output = df.to_csv(index=False, na_rep=np.nan) | |
if pa.types.is_binary(pa_dtype): | |
csv_output = BytesIO(csv_output) | |
else: | |
csv_output = StringIO(csv_output) | |
result = pd.read_csv( | |
csv_output, | |
dtype={"with_dtype": str(data.dtype)}, | |
engine=engine, | |
dtype_backend=dtype_backend, | |
) | |
expected = df | |
tm.assert_frame_equal(result, expected) | |
def test_invert(self, data, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if not ( | |
pa.types.is_boolean(pa_dtype) | |
or pa.types.is_integer(pa_dtype) | |
or pa.types.is_string(pa_dtype) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=pa.ArrowNotImplementedError, | |
reason=f"pyarrow.compute.invert does support {pa_dtype}", | |
) | |
) | |
if PY312 and pa.types.is_boolean(pa_dtype): | |
with tm.assert_produces_warning( | |
DeprecationWarning, match="Bitwise inversion", check_stacklevel=False | |
): | |
super().test_invert(data) | |
else: | |
super().test_invert(data) | |
def test_diff(self, data, periods, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if pa.types.is_unsigned_integer(pa_dtype) and periods == 1: | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason=( | |
f"diff with {pa_dtype} and periods={periods} will overflow" | |
), | |
) | |
) | |
super().test_diff(data, periods) | |
def test_value_counts_returns_pyarrow_int64(self, data): | |
# GH 51462 | |
data = data[:10] | |
result = data.value_counts() | |
assert result.dtype == ArrowDtype(pa.int64()) | |
_combine_le_expected_dtype = "bool[pyarrow]" | |
divmod_exc = NotImplementedError | |
def get_op_from_name(self, op_name): | |
short_opname = op_name.strip("_") | |
if short_opname == "rtruediv": | |
# use the numpy version that won't raise on division by zero | |
def rtruediv(x, y): | |
return np.divide(y, x) | |
return rtruediv | |
elif short_opname == "rfloordiv": | |
return lambda x, y: np.floor_divide(y, x) | |
return tm.get_op_from_name(op_name) | |
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result): | |
# BaseOpsUtil._combine can upcast expected dtype | |
# (because it generates expected on python scalars) | |
# while ArrowExtensionArray maintains original type | |
expected = pointwise_result | |
if op_name in ["eq", "ne", "lt", "le", "gt", "ge"]: | |
return pointwise_result.astype("boolean[pyarrow]") | |
was_frame = False | |
if isinstance(expected, pd.DataFrame): | |
was_frame = True | |
expected_data = expected.iloc[:, 0] | |
original_dtype = obj.iloc[:, 0].dtype | |
else: | |
expected_data = expected | |
original_dtype = obj.dtype | |
orig_pa_type = original_dtype.pyarrow_dtype | |
if not was_frame and isinstance(other, pd.Series): | |
# i.e. test_arith_series_with_array | |
if not ( | |
pa.types.is_floating(orig_pa_type) | |
or ( | |
pa.types.is_integer(orig_pa_type) | |
and op_name not in ["__truediv__", "__rtruediv__"] | |
) | |
or pa.types.is_duration(orig_pa_type) | |
or pa.types.is_timestamp(orig_pa_type) | |
or pa.types.is_date(orig_pa_type) | |
or pa.types.is_decimal(orig_pa_type) | |
): | |
# base class _combine always returns int64, while | |
# ArrowExtensionArray does not upcast | |
return expected | |
elif not ( | |
(op_name == "__floordiv__" and pa.types.is_integer(orig_pa_type)) | |
or pa.types.is_duration(orig_pa_type) | |
or pa.types.is_timestamp(orig_pa_type) | |
or pa.types.is_date(orig_pa_type) | |
or pa.types.is_decimal(orig_pa_type) | |
): | |
# base class _combine always returns int64, while | |
# ArrowExtensionArray does not upcast | |
return expected | |
pa_expected = pa.array(expected_data._values) | |
if pa.types.is_duration(pa_expected.type): | |
if pa.types.is_date(orig_pa_type): | |
if pa.types.is_date64(orig_pa_type): | |
# TODO: why is this different vs date32? | |
unit = "ms" | |
else: | |
unit = "s" | |
else: | |
# pyarrow sees sequence of datetime/timedelta objects and defaults | |
# to "us" but the non-pointwise op retains unit | |
# timestamp or duration | |
unit = orig_pa_type.unit | |
if type(other) in [datetime, timedelta] and unit in ["s", "ms"]: | |
# pydatetime/pytimedelta objects have microsecond reso, so we | |
# take the higher reso of the original and microsecond. Note | |
# this matches what we would do with DatetimeArray/TimedeltaArray | |
unit = "us" | |
pa_expected = pa_expected.cast(f"duration[{unit}]") | |
elif pa.types.is_decimal(pa_expected.type) and pa.types.is_decimal( | |
orig_pa_type | |
): | |
# decimal precision can resize in the result type depending on data | |
# just compare the float values | |
alt = getattr(obj, op_name)(other) | |
alt_dtype = tm.get_dtype(alt) | |
assert isinstance(alt_dtype, ArrowDtype) | |
if op_name == "__pow__" and isinstance(other, Decimal): | |
# TODO: would it make more sense to retain Decimal here? | |
alt_dtype = ArrowDtype(pa.float64()) | |
elif ( | |
op_name == "__pow__" | |
and isinstance(other, pd.Series) | |
and other.dtype == original_dtype | |
): | |
# TODO: would it make more sense to retain Decimal here? | |
alt_dtype = ArrowDtype(pa.float64()) | |
else: | |
assert pa.types.is_decimal(alt_dtype.pyarrow_dtype) | |
return expected.astype(alt_dtype) | |
else: | |
pa_expected = pa_expected.cast(orig_pa_type) | |
pd_expected = type(expected_data._values)(pa_expected) | |
if was_frame: | |
expected = pd.DataFrame( | |
pd_expected, index=expected.index, columns=expected.columns | |
) | |
else: | |
expected = pd.Series(pd_expected) | |
return expected | |
def _is_temporal_supported(self, opname, pa_dtype): | |
return ( | |
( | |
opname in ("__add__", "__radd__") | |
or ( | |
opname | |
in ("__truediv__", "__rtruediv__", "__floordiv__", "__rfloordiv__") | |
and not pa_version_under14p0 | |
) | |
) | |
and pa.types.is_duration(pa_dtype) | |
or opname in ("__sub__", "__rsub__") | |
and pa.types.is_temporal(pa_dtype) | |
) | |
def _get_expected_exception( | |
self, op_name: str, obj, other | |
) -> type[Exception] | None: | |
if op_name in ("__divmod__", "__rdivmod__"): | |
return self.divmod_exc | |
dtype = tm.get_dtype(obj) | |
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no | |
# attribute "pyarrow_dtype" | |
pa_dtype = dtype.pyarrow_dtype # type: ignore[union-attr] | |
arrow_temporal_supported = self._is_temporal_supported(op_name, pa_dtype) | |
if op_name in { | |
"__mod__", | |
"__rmod__", | |
}: | |
exc = NotImplementedError | |
elif arrow_temporal_supported: | |
exc = None | |
elif op_name in ["__add__", "__radd__"] and ( | |
pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) | |
): | |
exc = None | |
elif not ( | |
pa.types.is_floating(pa_dtype) | |
or pa.types.is_integer(pa_dtype) | |
or pa.types.is_decimal(pa_dtype) | |
): | |
# TODO: in many of these cases, e.g. non-duration temporal, | |
# these will *never* be allowed. Would it make more sense to | |
# re-raise as TypeError, more consistent with non-pyarrow cases? | |
exc = pa.ArrowNotImplementedError | |
else: | |
exc = None | |
return exc | |
def _get_arith_xfail_marker(self, opname, pa_dtype): | |
mark = None | |
arrow_temporal_supported = self._is_temporal_supported(opname, pa_dtype) | |
if opname == "__rpow__" and ( | |
pa.types.is_floating(pa_dtype) | |
or pa.types.is_integer(pa_dtype) | |
or pa.types.is_decimal(pa_dtype) | |
): | |
mark = pytest.mark.xfail( | |
reason=( | |
f"GH#29997: 1**pandas.NA == 1 while 1**pyarrow.NA == NULL " | |
f"for {pa_dtype}" | |
) | |
) | |
elif arrow_temporal_supported and ( | |
pa.types.is_time(pa_dtype) | |
or ( | |
opname | |
in ("__truediv__", "__rtruediv__", "__floordiv__", "__rfloordiv__") | |
and pa.types.is_duration(pa_dtype) | |
) | |
): | |
mark = pytest.mark.xfail( | |
raises=TypeError, | |
reason=( | |
f"{opname} not supported between" | |
f"pd.NA and {pa_dtype} Python scalar" | |
), | |
) | |
elif opname == "__rfloordiv__" and ( | |
pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype) | |
): | |
mark = pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason="divide by 0", | |
) | |
elif opname == "__rtruediv__" and pa.types.is_decimal(pa_dtype): | |
mark = pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason="divide by 0", | |
) | |
return mark | |
def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if all_arithmetic_operators == "__rmod__" and pa.types.is_binary(pa_dtype): | |
pytest.skip("Skip testing Python string formatting") | |
elif all_arithmetic_operators in ("__rmul__", "__mul__") and ( | |
pa.types.is_binary(pa_dtype) or pa.types.is_string(pa_dtype) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=TypeError, reason="Can only string multiply by an integer." | |
) | |
) | |
mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) | |
if mark is not None: | |
request.applymarker(mark) | |
super().test_arith_series_with_scalar(data, all_arithmetic_operators) | |
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if all_arithmetic_operators == "__rmod__" and ( | |
pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) | |
): | |
pytest.skip("Skip testing Python string formatting") | |
elif all_arithmetic_operators in ("__rmul__", "__mul__") and ( | |
pa.types.is_binary(pa_dtype) or pa.types.is_string(pa_dtype) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=TypeError, reason="Can only string multiply by an integer." | |
) | |
) | |
mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) | |
if mark is not None: | |
request.applymarker(mark) | |
super().test_arith_frame_with_scalar(data, all_arithmetic_operators) | |
def test_arith_series_with_array(self, data, all_arithmetic_operators, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if all_arithmetic_operators in ( | |
"__sub__", | |
"__rsub__", | |
) and pa.types.is_unsigned_integer(pa_dtype): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason=( | |
f"Implemented pyarrow.compute.subtract_checked " | |
f"which raises on overflow for {pa_dtype}" | |
), | |
) | |
) | |
elif all_arithmetic_operators in ("__rmul__", "__mul__") and ( | |
pa.types.is_binary(pa_dtype) or pa.types.is_string(pa_dtype) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=TypeError, reason="Can only string multiply by an integer." | |
) | |
) | |
mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) | |
if mark is not None: | |
request.applymarker(mark) | |
op_name = all_arithmetic_operators | |
ser = pd.Series(data) | |
# pd.Series([ser.iloc[0]] * len(ser)) may not return ArrowExtensionArray | |
# since ser.iloc[0] is a python scalar | |
other = pd.Series(pd.array([ser.iloc[0]] * len(ser), dtype=data.dtype)) | |
self.check_opname(ser, op_name, other) | |
def test_add_series_with_extension_array(self, data, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if pa_dtype.equals("int8"): | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason=f"raises on overflow for {pa_dtype}", | |
) | |
) | |
super().test_add_series_with_extension_array(data) | |
def test_invalid_other_comp(self, data, comparison_op): | |
# GH 48833 | |
with pytest.raises( | |
NotImplementedError, match=".* not implemented for <class 'object'>" | |
): | |
comparison_op(data, object()) | |
def test_comp_masked_numpy(self, masked_dtype, comparison_op): | |
# GH 52625 | |
data = [1, 0, None] | |
ser_masked = pd.Series(data, dtype=masked_dtype) | |
ser_pa = pd.Series(data, dtype=f"{masked_dtype.lower()}[pyarrow]") | |
result = comparison_op(ser_pa, ser_masked) | |
if comparison_op in [operator.lt, operator.gt, operator.ne]: | |
exp = [False, False, None] | |
else: | |
exp = [True, True, None] | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
class TestLogicalOps: | |
"""Various Series and DataFrame logical ops methods.""" | |
def test_kleene_or(self): | |
a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") | |
b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") | |
result = a | b | |
expected = pd.Series( | |
[True, True, True, True, False, None, True, None, None], | |
dtype="boolean[pyarrow]", | |
) | |
tm.assert_series_equal(result, expected) | |
result = b | a | |
tm.assert_series_equal(result, expected) | |
# ensure we haven't mutated anything inplace | |
tm.assert_series_equal( | |
a, | |
pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), | |
) | |
tm.assert_series_equal( | |
b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") | |
) | |
def test_kleene_or_scalar(self, other, expected): | |
a = pd.Series([True, False, None], dtype="boolean[pyarrow]") | |
result = a | other | |
expected = pd.Series(expected, dtype="boolean[pyarrow]") | |
tm.assert_series_equal(result, expected) | |
result = other | a | |
tm.assert_series_equal(result, expected) | |
# ensure we haven't mutated anything inplace | |
tm.assert_series_equal( | |
a, pd.Series([True, False, None], dtype="boolean[pyarrow]") | |
) | |
def test_kleene_and(self): | |
a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") | |
b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") | |
result = a & b | |
expected = pd.Series( | |
[True, False, None, False, False, False, None, False, None], | |
dtype="boolean[pyarrow]", | |
) | |
tm.assert_series_equal(result, expected) | |
result = b & a | |
tm.assert_series_equal(result, expected) | |
# ensure we haven't mutated anything inplace | |
tm.assert_series_equal( | |
a, | |
pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), | |
) | |
tm.assert_series_equal( | |
b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") | |
) | |
def test_kleene_and_scalar(self, other, expected): | |
a = pd.Series([True, False, None], dtype="boolean[pyarrow]") | |
result = a & other | |
expected = pd.Series(expected, dtype="boolean[pyarrow]") | |
tm.assert_series_equal(result, expected) | |
result = other & a | |
tm.assert_series_equal(result, expected) | |
# ensure we haven't mutated anything inplace | |
tm.assert_series_equal( | |
a, pd.Series([True, False, None], dtype="boolean[pyarrow]") | |
) | |
def test_kleene_xor(self): | |
a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") | |
b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") | |
result = a ^ b | |
expected = pd.Series( | |
[False, True, None, True, False, None, None, None, None], | |
dtype="boolean[pyarrow]", | |
) | |
tm.assert_series_equal(result, expected) | |
result = b ^ a | |
tm.assert_series_equal(result, expected) | |
# ensure we haven't mutated anything inplace | |
tm.assert_series_equal( | |
a, | |
pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), | |
) | |
tm.assert_series_equal( | |
b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") | |
) | |
def test_kleene_xor_scalar(self, other, expected): | |
a = pd.Series([True, False, None], dtype="boolean[pyarrow]") | |
result = a ^ other | |
expected = pd.Series(expected, dtype="boolean[pyarrow]") | |
tm.assert_series_equal(result, expected) | |
result = other ^ a | |
tm.assert_series_equal(result, expected) | |
# ensure we haven't mutated anything inplace | |
tm.assert_series_equal( | |
a, pd.Series([True, False, None], dtype="boolean[pyarrow]") | |
) | |
def test_logical_masked_numpy(self, op, exp): | |
# GH 52625 | |
data = [True, False, None] | |
ser_masked = pd.Series(data, dtype="boolean") | |
ser_pa = pd.Series(data, dtype="boolean[pyarrow]") | |
result = getattr(ser_pa, op)(ser_masked) | |
expected = pd.Series([exp, False, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_bitwise(pa_type): | |
# GH 54495 | |
dtype = ArrowDtype(pa_type) | |
left = pd.Series([1, None, 3, 4], dtype=dtype) | |
right = pd.Series([None, 3, 5, 4], dtype=dtype) | |
result = left | right | |
expected = pd.Series([None, None, 3 | 5, 4 | 4], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
result = left & right | |
expected = pd.Series([None, None, 3 & 5, 4 & 4], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
result = left ^ right | |
expected = pd.Series([None, None, 3 ^ 5, 4 ^ 4], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
result = ~left | |
expected = ~(left.fillna(0).to_numpy()) | |
expected = pd.Series(expected, dtype=dtype).mask(left.isnull()) | |
tm.assert_series_equal(result, expected) | |
def test_arrowdtype_construct_from_string_type_with_unsupported_parameters(): | |
with pytest.raises(NotImplementedError, match="Passing pyarrow type"): | |
ArrowDtype.construct_from_string("not_a_real_dype[s, tz=UTC][pyarrow]") | |
with pytest.raises(NotImplementedError, match="Passing pyarrow type"): | |
ArrowDtype.construct_from_string("decimal(7, 2)[pyarrow]") | |
def test_arrowdtype_construct_from_string_supports_dt64tz(): | |
# as of GH#50689, timestamptz is supported | |
dtype = ArrowDtype.construct_from_string("timestamp[s, tz=UTC][pyarrow]") | |
expected = ArrowDtype(pa.timestamp("s", "UTC")) | |
assert dtype == expected | |
def test_arrowdtype_construct_from_string_type_only_one_pyarrow(): | |
# GH#51225 | |
invalid = "int64[pyarrow]foobar[pyarrow]" | |
msg = ( | |
r"Passing pyarrow type specific parameters \(\[pyarrow\]\) in the " | |
r"string is not supported\." | |
) | |
with pytest.raises(NotImplementedError, match=msg): | |
pd.Series(range(3), dtype=invalid) | |
def test_arrow_string_multiplication(): | |
# GH 56537 | |
binary = pd.Series(["abc", "defg"], dtype=ArrowDtype(pa.string())) | |
repeat = pd.Series([2, -2], dtype="int64[pyarrow]") | |
result = binary * repeat | |
expected = pd.Series(["abcabc", ""], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
reflected_result = repeat * binary | |
tm.assert_series_equal(result, reflected_result) | |
def test_arrow_string_multiplication_scalar_repeat(): | |
binary = pd.Series(["abc", "defg"], dtype=ArrowDtype(pa.string())) | |
result = binary * 2 | |
expected = pd.Series(["abcabc", "defgdefg"], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
reflected_result = 2 * binary | |
tm.assert_series_equal(reflected_result, expected) | |
def test_quantile(data, interpolation, quantile, request): | |
pa_dtype = data.dtype.pyarrow_dtype | |
data = data.take([0, 0, 0]) | |
ser = pd.Series(data) | |
if ( | |
pa.types.is_string(pa_dtype) | |
or pa.types.is_binary(pa_dtype) | |
or pa.types.is_boolean(pa_dtype) | |
): | |
# For string, bytes, and bool, we don't *expect* to have quantile work | |
# Note this matches the non-pyarrow behavior | |
msg = r"Function 'quantile' has no kernel matching input types \(.*\)" | |
with pytest.raises(pa.ArrowNotImplementedError, match=msg): | |
ser.quantile(q=quantile, interpolation=interpolation) | |
return | |
if ( | |
pa.types.is_integer(pa_dtype) | |
or pa.types.is_floating(pa_dtype) | |
or pa.types.is_decimal(pa_dtype) | |
): | |
pass | |
elif pa.types.is_temporal(data._pa_array.type): | |
pass | |
else: | |
request.applymarker( | |
pytest.mark.xfail( | |
raises=pa.ArrowNotImplementedError, | |
reason=f"quantile not supported by pyarrow for {pa_dtype}", | |
) | |
) | |
data = data.take([0, 0, 0]) | |
ser = pd.Series(data) | |
result = ser.quantile(q=quantile, interpolation=interpolation) | |
if pa.types.is_timestamp(pa_dtype) and interpolation not in ["lower", "higher"]: | |
# rounding error will make the check below fail | |
# (e.g. '2020-01-01 01:01:01.000001' vs '2020-01-01 01:01:01.000001024'), | |
# so we'll check for now that we match the numpy analogue | |
if pa_dtype.tz: | |
pd_dtype = f"M8[{pa_dtype.unit}, {pa_dtype.tz}]" | |
else: | |
pd_dtype = f"M8[{pa_dtype.unit}]" | |
ser_np = ser.astype(pd_dtype) | |
expected = ser_np.quantile(q=quantile, interpolation=interpolation) | |
if quantile == 0.5: | |
if pa_dtype.unit == "us": | |
expected = expected.to_pydatetime(warn=False) | |
assert result == expected | |
else: | |
if pa_dtype.unit == "us": | |
expected = expected.dt.floor("us") | |
tm.assert_series_equal(result, expected.astype(data.dtype)) | |
return | |
if quantile == 0.5: | |
assert result == data[0] | |
else: | |
# Just check the values | |
expected = pd.Series(data.take([0, 0]), index=[0.5, 0.5]) | |
if ( | |
pa.types.is_integer(pa_dtype) | |
or pa.types.is_floating(pa_dtype) | |
or pa.types.is_decimal(pa_dtype) | |
): | |
expected = expected.astype("float64[pyarrow]") | |
result = result.astype("float64[pyarrow]") | |
tm.assert_series_equal(result, expected) | |
def test_mode_dropna_true(data_for_grouping, take_idx, exp_idx): | |
data = data_for_grouping.take(take_idx) | |
ser = pd.Series(data) | |
result = ser.mode(dropna=True) | |
expected = pd.Series(data_for_grouping.take(exp_idx)) | |
tm.assert_series_equal(result, expected) | |
def test_mode_dropna_false_mode_na(data): | |
# GH 50982 | |
more_nans = pd.Series([None, None, data[0]], dtype=data.dtype) | |
result = more_nans.mode(dropna=False) | |
expected = pd.Series([None], dtype=data.dtype) | |
tm.assert_series_equal(result, expected) | |
expected = pd.Series([data[0], None], dtype=data.dtype) | |
result = expected.mode(dropna=False) | |
tm.assert_series_equal(result, expected) | |
def test_arrow_dtype_type(arrow_dtype, expected_type): | |
# GH 51845 | |
# TODO: Redundant with test_getitem_scalar once arrow_dtype exists in data fixture | |
assert ArrowDtype(arrow_dtype).type == expected_type | |
def test_is_bool_dtype(): | |
# GH 22667 | |
data = ArrowExtensionArray(pa.array([True, False, True])) | |
assert is_bool_dtype(data) | |
assert pd.core.common.is_bool_indexer(data) | |
s = pd.Series(range(len(data))) | |
result = s[data] | |
expected = s[np.asarray(data)] | |
tm.assert_series_equal(result, expected) | |
def test_is_numeric_dtype(data): | |
# GH 50563 | |
pa_type = data.dtype.pyarrow_dtype | |
if ( | |
pa.types.is_floating(pa_type) | |
or pa.types.is_integer(pa_type) | |
or pa.types.is_decimal(pa_type) | |
): | |
assert is_numeric_dtype(data) | |
else: | |
assert not is_numeric_dtype(data) | |
def test_is_integer_dtype(data): | |
# GH 50667 | |
pa_type = data.dtype.pyarrow_dtype | |
if pa.types.is_integer(pa_type): | |
assert is_integer_dtype(data) | |
else: | |
assert not is_integer_dtype(data) | |
def test_is_signed_integer_dtype(data): | |
pa_type = data.dtype.pyarrow_dtype | |
if pa.types.is_signed_integer(pa_type): | |
assert is_signed_integer_dtype(data) | |
else: | |
assert not is_signed_integer_dtype(data) | |
def test_is_unsigned_integer_dtype(data): | |
pa_type = data.dtype.pyarrow_dtype | |
if pa.types.is_unsigned_integer(pa_type): | |
assert is_unsigned_integer_dtype(data) | |
else: | |
assert not is_unsigned_integer_dtype(data) | |
def test_is_float_dtype(data): | |
pa_type = data.dtype.pyarrow_dtype | |
if pa.types.is_floating(pa_type): | |
assert is_float_dtype(data) | |
else: | |
assert not is_float_dtype(data) | |
def test_pickle_roundtrip(data): | |
# GH 42600 | |
expected = pd.Series(data) | |
expected_sliced = expected.head(2) | |
full_pickled = pickle.dumps(expected) | |
sliced_pickled = pickle.dumps(expected_sliced) | |
assert len(full_pickled) > len(sliced_pickled) | |
result = pickle.loads(full_pickled) | |
tm.assert_series_equal(result, expected) | |
result_sliced = pickle.loads(sliced_pickled) | |
tm.assert_series_equal(result_sliced, expected_sliced) | |
def test_astype_from_non_pyarrow(data): | |
# GH49795 | |
pd_array = data._pa_array.to_pandas().array | |
result = pd_array.astype(data.dtype) | |
assert not isinstance(pd_array.dtype, ArrowDtype) | |
assert isinstance(result.dtype, ArrowDtype) | |
tm.assert_extension_array_equal(result, data) | |
def test_astype_float_from_non_pyarrow_str(): | |
# GH50430 | |
ser = pd.Series(["1.0"]) | |
result = ser.astype("float64[pyarrow]") | |
expected = pd.Series([1.0], dtype="float64[pyarrow]") | |
tm.assert_series_equal(result, expected) | |
def test_astype_errors_ignore(): | |
# GH 55399 | |
expected = pd.DataFrame({"col": [17000000]}, dtype="int32[pyarrow]") | |
result = expected.astype("float[pyarrow]", errors="ignore") | |
tm.assert_frame_equal(result, expected) | |
def test_to_numpy_with_defaults(data): | |
# GH49973 | |
result = data.to_numpy() | |
pa_type = data._pa_array.type | |
if pa.types.is_duration(pa_type) or pa.types.is_timestamp(pa_type): | |
pytest.skip("Tested in test_to_numpy_temporal") | |
elif pa.types.is_date(pa_type): | |
expected = np.array(list(data)) | |
else: | |
expected = np.array(data._pa_array) | |
if data._hasna and not is_numeric_dtype(data.dtype): | |
expected = expected.astype(object) | |
expected[pd.isna(data)] = pd.NA | |
tm.assert_numpy_array_equal(result, expected) | |
def test_to_numpy_int_with_na(): | |
# GH51227: ensure to_numpy does not convert int to float | |
data = [1, None] | |
arr = pd.array(data, dtype="int64[pyarrow]") | |
result = arr.to_numpy() | |
expected = np.array([1, np.nan]) | |
assert isinstance(result[0], float) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_to_numpy_null_array(na_val, exp): | |
# GH#52443 | |
arr = pd.array([pd.NA, pd.NA], dtype="null[pyarrow]") | |
result = arr.to_numpy(dtype="float64", na_value=na_val) | |
expected = np.array([exp] * 2, dtype="float64") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_to_numpy_null_array_no_dtype(): | |
# GH#52443 | |
arr = pd.array([pd.NA, pd.NA], dtype="null[pyarrow]") | |
result = arr.to_numpy(dtype=None) | |
expected = np.array([pd.NA] * 2, dtype="object") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_to_numpy_without_dtype(): | |
# GH 54808 | |
arr = pd.array([True, pd.NA], dtype="boolean[pyarrow]") | |
result = arr.to_numpy(na_value=False) | |
expected = np.array([True, False], dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |
arr = pd.array([1.0, pd.NA], dtype="float32[pyarrow]") | |
result = arr.to_numpy(na_value=0.0) | |
expected = np.array([1.0, 0.0], dtype=np.float32) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_setitem_null_slice(data): | |
# GH50248 | |
orig = data.copy() | |
result = orig.copy() | |
result[:] = data[0] | |
expected = ArrowExtensionArray._from_sequence( | |
[data[0]] * len(data), | |
dtype=data.dtype, | |
) | |
tm.assert_extension_array_equal(result, expected) | |
result = orig.copy() | |
result[:] = data[::-1] | |
expected = data[::-1] | |
tm.assert_extension_array_equal(result, expected) | |
result = orig.copy() | |
result[:] = data.tolist() | |
expected = data | |
tm.assert_extension_array_equal(result, expected) | |
def test_setitem_invalid_dtype(data): | |
# GH50248 | |
pa_type = data._pa_array.type | |
if pa.types.is_string(pa_type) or pa.types.is_binary(pa_type): | |
fill_value = 123 | |
err = TypeError | |
msg = "Invalid value '123' for dtype" | |
elif ( | |
pa.types.is_integer(pa_type) | |
or pa.types.is_floating(pa_type) | |
or pa.types.is_boolean(pa_type) | |
): | |
fill_value = "foo" | |
err = pa.ArrowInvalid | |
msg = "Could not convert" | |
else: | |
fill_value = "foo" | |
err = TypeError | |
msg = "Invalid value 'foo' for dtype" | |
with pytest.raises(err, match=msg): | |
data[:] = fill_value | |
def test_from_arrow_respecting_given_dtype(): | |
date_array = pa.array( | |
[pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31")], type=pa.date32() | |
) | |
result = date_array.to_pandas( | |
types_mapper={pa.date32(): ArrowDtype(pa.date64())}.get | |
) | |
expected = pd.Series( | |
[pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31")], | |
dtype=ArrowDtype(pa.date64()), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_from_arrow_respecting_given_dtype_unsafe(): | |
array = pa.array([1.5, 2.5], type=pa.float64()) | |
with pytest.raises(pa.ArrowInvalid, match="Float value 1.5 was truncated"): | |
array.to_pandas(types_mapper={pa.float64(): ArrowDtype(pa.int64())}.get) | |
def test_round(): | |
dtype = "float64[pyarrow]" | |
ser = pd.Series([0.0, 1.23, 2.56, pd.NA], dtype=dtype) | |
result = ser.round(1) | |
expected = pd.Series([0.0, 1.2, 2.6, pd.NA], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
ser = pd.Series([123.4, pd.NA, 56.78], dtype=dtype) | |
result = ser.round(-1) | |
expected = pd.Series([120.0, pd.NA, 60.0], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
def test_searchsorted_with_na_raises(data_for_sorting, as_series): | |
# GH50447 | |
b, c, a = data_for_sorting | |
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c] | |
arr[-1] = pd.NA | |
if as_series: | |
arr = pd.Series(arr) | |
msg = ( | |
"searchsorted requires array to be sorted, " | |
"which is impossible with NAs present." | |
) | |
with pytest.raises(ValueError, match=msg): | |
arr.searchsorted(b) | |
def test_sort_values_dictionary(): | |
df = pd.DataFrame( | |
{ | |
"a": pd.Series( | |
["x", "y"], dtype=ArrowDtype(pa.dictionary(pa.int32(), pa.string())) | |
), | |
"b": [1, 2], | |
}, | |
) | |
expected = df.copy() | |
result = df.sort_values(by=["a", "b"]) | |
tm.assert_frame_equal(result, expected) | |
def test_str_count(pat): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.count(pat) | |
expected = pd.Series([1, None], dtype=ArrowDtype(pa.int32())) | |
tm.assert_series_equal(result, expected) | |
def test_str_count_flags_unsupported(): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
with pytest.raises(NotImplementedError, match="count not"): | |
ser.str.count("abc", flags=1) | |
def test_str_pad(side, str_func): | |
ser = pd.Series(["a", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.pad(width=3, side=side, fillchar="x") | |
expected = pd.Series( | |
[getattr("a", str_func)(3, "x"), None], dtype=ArrowDtype(pa.string()) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_str_pad_invalid_side(): | |
ser = pd.Series(["a", None], dtype=ArrowDtype(pa.string())) | |
with pytest.raises(ValueError, match="Invalid side: foo"): | |
ser.str.pad(3, "foo", "x") | |
def test_str_contains(pat, case, na, regex, exp): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.contains(pat, case=case, na=na, regex=regex) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_str_contains_flags_unsupported(): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
with pytest.raises(NotImplementedError, match="contains not"): | |
ser.str.contains("a", flags=1) | |
def test_str_start_ends_with(side, pat, na, exp): | |
ser = pd.Series(["abc", None, "efg"], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, side)(pat, na=na) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_str_starts_ends_with_all_nulls_empty_tuple(side): | |
ser = pd.Series([None, None], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, side)(()) | |
# bool datatype preserved for all nulls. | |
expected = pd.Series([None, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_str_replace_unsupported(arg_name, arg): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
kwargs = {"pat": "b", "repl": "x", "regex": True} | |
kwargs[arg_name] = arg | |
with pytest.raises(NotImplementedError, match="replace is not supported"): | |
ser.str.replace(**kwargs) | |
def test_str_replace(pat, repl, n, regex, exp): | |
ser = pd.Series(["abac", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.replace(pat, repl, n=n, regex=regex) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_replace_negative_n(): | |
# GH 56404 | |
ser = pd.Series(["abc", "aaaaaa"], dtype=ArrowDtype(pa.string())) | |
actual = ser.str.replace("a", "", -3, True) | |
expected = pd.Series(["bc", ""], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(expected, actual) | |
def test_str_repeat_unsupported(): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
with pytest.raises(NotImplementedError, match="repeat is not"): | |
ser.str.repeat([1, 2]) | |
def test_str_repeat(): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.repeat(2) | |
expected = pd.Series(["abcabc", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_match(pat, case, na, exp): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.match(pat, case=case, na=na) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_str_fullmatch(pat, case, na, exp): | |
ser = pd.Series(["abc", "abc$", "$abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.match(pat, case=case, na=na) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_str_find(sub, start, end, exp, exp_typ): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.find(sub, start=start, end=end) | |
expected = pd.Series(exp, dtype=ArrowDtype(exp_typ)) | |
tm.assert_series_equal(result, expected) | |
def test_str_find_negative_start(): | |
# GH 56411 | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.find(sub="b", start=-1000, end=3) | |
expected = pd.Series([1, None], dtype=ArrowDtype(pa.int64())) | |
tm.assert_series_equal(result, expected) | |
def test_str_find_notimplemented(): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
with pytest.raises(NotImplementedError, match="find not implemented"): | |
ser.str.find("ab", start=1) | |
def test_str_get(i, exp): | |
ser = pd.Series(["abc", "de", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.get(i) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_join(): | |
ser = pd.Series(ArrowExtensionArray(pa.array([list("abc"), list("123"), None]))) | |
result = ser.str.join("=") | |
expected = pd.Series(["a=b=c", "1=2=3", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_join_string_type(): | |
ser = pd.Series(ArrowExtensionArray(pa.array(["abc", "123", None]))) | |
result = ser.str.join("=") | |
expected = pd.Series(["a=b=c", "1=2=3", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_slice(start, stop, step, exp): | |
ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.slice(start, stop, step) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_slice_replace(start, stop, repl, exp): | |
ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.slice_replace(start, stop, repl) | |
expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_is_functions(value, method, exp): | |
ser = pd.Series([value, None], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, method)() | |
expected = pd.Series([exp, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_str_transform_functions(method, exp): | |
ser = pd.Series(["aBc dEF", None], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, method)() | |
expected = pd.Series([exp, None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_len(): | |
ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.len() | |
expected = pd.Series([4, None], dtype=ArrowDtype(pa.int32())) | |
tm.assert_series_equal(result, expected) | |
def test_str_strip(method, to_strip, val): | |
ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, method)(to_strip=to_strip) | |
expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_removesuffix(val): | |
ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.removesuffix("123") | |
expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_removeprefix(val): | |
ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.removeprefix("123") | |
expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_encode(errors, encoding, exp): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.encode(encoding, errors) | |
expected = pd.Series([exp, None], dtype=ArrowDtype(pa.binary())) | |
tm.assert_series_equal(result, expected) | |
def test_str_findall(flags): | |
ser = pd.Series(["abc", "efg", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.findall("b", flags=flags) | |
expected = pd.Series([["b"], [], None], dtype=ArrowDtype(pa.list_(pa.string()))) | |
tm.assert_series_equal(result, expected) | |
def test_str_r_index(method, start, end): | |
ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, method)("c", start, end) | |
expected = pd.Series([2, None], dtype=ArrowDtype(pa.int64())) | |
tm.assert_series_equal(result, expected) | |
with pytest.raises(ValueError, match="substring not found"): | |
getattr(ser.str, method)("foo", start, end) | |
def test_str_normalize(form): | |
ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.normalize(form) | |
expected = ser.copy() | |
tm.assert_series_equal(result, expected) | |
def test_str_rfind(start, end): | |
ser = pd.Series(["abcba", "foo", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.rfind("c", start, end) | |
expected = pd.Series([2, -1, None], dtype=ArrowDtype(pa.int64())) | |
tm.assert_series_equal(result, expected) | |
def test_str_translate(): | |
ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.translate({97: "b"}) | |
expected = pd.Series(["bbcbb", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_str_wrap(): | |
ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.wrap(3) | |
expected = pd.Series(["abc\nba", None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_get_dummies(): | |
ser = pd.Series(["a|b", None, "a|c"], dtype=ArrowDtype(pa.string())) | |
result = ser.str.get_dummies() | |
expected = pd.DataFrame( | |
[[True, True, False], [False, False, False], [True, False, True]], | |
dtype=ArrowDtype(pa.bool_()), | |
columns=["a", "b", "c"], | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_str_partition(): | |
ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.partition("b") | |
expected = pd.DataFrame( | |
[["a", "b", "cba"], [None, None, None]], dtype=ArrowDtype(pa.string()) | |
) | |
tm.assert_frame_equal(result, expected) | |
result = ser.str.partition("b", expand=False) | |
expected = pd.Series(ArrowExtensionArray(pa.array([["a", "b", "cba"], None]))) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.rpartition("b") | |
expected = pd.DataFrame( | |
[["abc", "b", "a"], [None, None, None]], dtype=ArrowDtype(pa.string()) | |
) | |
tm.assert_frame_equal(result, expected) | |
result = ser.str.rpartition("b", expand=False) | |
expected = pd.Series(ArrowExtensionArray(pa.array([["abc", "b", "a"], None]))) | |
tm.assert_series_equal(result, expected) | |
def test_str_split_pat_none(method): | |
# GH 56271 | |
ser = pd.Series(["a1 cbc\nb", None], dtype=ArrowDtype(pa.string())) | |
result = getattr(ser.str, method)() | |
expected = pd.Series(ArrowExtensionArray(pa.array([["a1", "cbc", "b"], None]))) | |
tm.assert_series_equal(result, expected) | |
def test_str_split(): | |
# GH 52401 | |
ser = pd.Series(["a1cbcb", "a2cbcb", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.split("c") | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([["a1", "b", "b"], ["a2", "b", "b"], None])) | |
) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.split("c", n=1) | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([["a1", "bcb"], ["a2", "bcb"], None])) | |
) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.split("[1-2]", regex=True) | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([["a", "cbcb"], ["a", "cbcb"], None])) | |
) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.split("[1-2]", regex=True, expand=True) | |
expected = pd.DataFrame( | |
{ | |
0: ArrowExtensionArray(pa.array(["a", "a", None])), | |
1: ArrowExtensionArray(pa.array(["cbcb", "cbcb", None])), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
result = ser.str.split("1", expand=True) | |
expected = pd.DataFrame( | |
{ | |
0: ArrowExtensionArray(pa.array(["a", "a2cbcb", None])), | |
1: ArrowExtensionArray(pa.array(["cbcb", None, None])), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_str_rsplit(): | |
# GH 52401 | |
ser = pd.Series(["a1cbcb", "a2cbcb", None], dtype=ArrowDtype(pa.string())) | |
result = ser.str.rsplit("c") | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([["a1", "b", "b"], ["a2", "b", "b"], None])) | |
) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.rsplit("c", n=1) | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([["a1cb", "b"], ["a2cb", "b"], None])) | |
) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.rsplit("c", n=1, expand=True) | |
expected = pd.DataFrame( | |
{ | |
0: ArrowExtensionArray(pa.array(["a1cb", "a2cb", None])), | |
1: ArrowExtensionArray(pa.array(["b", "b", None])), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
result = ser.str.rsplit("1", expand=True) | |
expected = pd.DataFrame( | |
{ | |
0: ArrowExtensionArray(pa.array(["a", "a2cbcb", None])), | |
1: ArrowExtensionArray(pa.array(["cbcb", None, None])), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_str_extract_non_symbolic(): | |
ser = pd.Series(["a1", "b2", "c3"], dtype=ArrowDtype(pa.string())) | |
with pytest.raises(ValueError, match="pat=.* must contain a symbolic group name."): | |
ser.str.extract(r"[ab](\d)") | |
def test_str_extract(expand): | |
ser = pd.Series(["a1", "b2", "c3"], dtype=ArrowDtype(pa.string())) | |
result = ser.str.extract(r"(?P<letter>[ab])(?P<digit>\d)", expand=expand) | |
expected = pd.DataFrame( | |
{ | |
"letter": ArrowExtensionArray(pa.array(["a", "b", None])), | |
"digit": ArrowExtensionArray(pa.array(["1", "2", None])), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_str_extract_expand(): | |
ser = pd.Series(["a1", "b2", "c3"], dtype=ArrowDtype(pa.string())) | |
result = ser.str.extract(r"[ab](?P<digit>\d)", expand=True) | |
expected = pd.DataFrame( | |
{ | |
"digit": ArrowExtensionArray(pa.array(["1", "2", None])), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
result = ser.str.extract(r"[ab](?P<digit>\d)", expand=False) | |
expected = pd.Series(ArrowExtensionArray(pa.array(["1", "2", None])), name="digit") | |
tm.assert_series_equal(result, expected) | |
def test_duration_from_strings_with_nat(unit): | |
# GH51175 | |
strings = ["1000", "NaT"] | |
pa_type = pa.duration(unit) | |
result = ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa_type) | |
expected = ArrowExtensionArray(pa.array([1000, None], type=pa_type)) | |
tm.assert_extension_array_equal(result, expected) | |
def test_unsupported_dt(data): | |
pa_dtype = data.dtype.pyarrow_dtype | |
if not pa.types.is_temporal(pa_dtype): | |
with pytest.raises( | |
AttributeError, match="Can only use .dt accessor with datetimelike values" | |
): | |
pd.Series(data).dt | |
def test_dt_properties(prop, expected): | |
ser = pd.Series( | |
[ | |
pd.Timestamp( | |
year=2023, | |
month=1, | |
day=2, | |
hour=3, | |
minute=4, | |
second=7, | |
microsecond=5, | |
nanosecond=6, | |
), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
result = getattr(ser.dt, prop) | |
exp_type = None | |
if isinstance(expected, date): | |
exp_type = pa.date32() | |
elif isinstance(expected, time): | |
exp_type = pa.time64("ns") | |
expected = pd.Series(ArrowExtensionArray(pa.array([expected, None], type=exp_type))) | |
tm.assert_series_equal(result, expected) | |
def test_dt_is_month_start_end(): | |
ser = pd.Series( | |
[ | |
datetime(year=2023, month=12, day=2, hour=3), | |
datetime(year=2023, month=1, day=1, hour=3), | |
datetime(year=2023, month=3, day=31, hour=3), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("us")), | |
) | |
result = ser.dt.is_month_start | |
expected = pd.Series([False, True, False, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
result = ser.dt.is_month_end | |
expected = pd.Series([False, False, True, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_dt_is_year_start_end(): | |
ser = pd.Series( | |
[ | |
datetime(year=2023, month=12, day=31, hour=3), | |
datetime(year=2023, month=1, day=1, hour=3), | |
datetime(year=2023, month=3, day=31, hour=3), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("us")), | |
) | |
result = ser.dt.is_year_start | |
expected = pd.Series([False, True, False, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
result = ser.dt.is_year_end | |
expected = pd.Series([True, False, False, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_dt_is_quarter_start_end(): | |
ser = pd.Series( | |
[ | |
datetime(year=2023, month=11, day=30, hour=3), | |
datetime(year=2023, month=1, day=1, hour=3), | |
datetime(year=2023, month=3, day=31, hour=3), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("us")), | |
) | |
result = ser.dt.is_quarter_start | |
expected = pd.Series([False, True, False, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
result = ser.dt.is_quarter_end | |
expected = pd.Series([False, False, True, None], dtype=ArrowDtype(pa.bool_())) | |
tm.assert_series_equal(result, expected) | |
def test_dt_days_in_month(method): | |
ser = pd.Series( | |
[ | |
datetime(year=2023, month=3, day=30, hour=3), | |
datetime(year=2023, month=4, day=1, hour=3), | |
datetime(year=2023, month=2, day=3, hour=3), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("us")), | |
) | |
result = getattr(ser.dt, method) | |
expected = pd.Series([31, 30, 28, None], dtype=ArrowDtype(pa.int64())) | |
tm.assert_series_equal(result, expected) | |
def test_dt_normalize(): | |
ser = pd.Series( | |
[ | |
datetime(year=2023, month=3, day=30), | |
datetime(year=2023, month=4, day=1, hour=3), | |
datetime(year=2023, month=2, day=3, hour=23, minute=59, second=59), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("us")), | |
) | |
result = ser.dt.normalize() | |
expected = pd.Series( | |
[ | |
datetime(year=2023, month=3, day=30), | |
datetime(year=2023, month=4, day=1), | |
datetime(year=2023, month=2, day=3), | |
None, | |
], | |
dtype=ArrowDtype(pa.timestamp("us")), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_time_preserve_unit(unit): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp(unit)), | |
) | |
assert ser.dt.unit == unit | |
result = ser.dt.time | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([time(3, 0), None], type=pa.time64(unit))) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_tz(tz): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns", tz=tz)), | |
) | |
result = ser.dt.tz | |
assert result == timezones.maybe_get_tz(tz) | |
def test_dt_isocalendar(): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
result = ser.dt.isocalendar() | |
expected = pd.DataFrame( | |
[[2023, 1, 1], [0, 0, 0]], | |
columns=["year", "week", "day"], | |
dtype="int64[pyarrow]", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_dt_day_month_name(method, exp, request): | |
# GH 52388 | |
_require_timezone_database(request) | |
ser = pd.Series([datetime(2023, 1, 1), None], dtype=ArrowDtype(pa.timestamp("ms"))) | |
result = getattr(ser.dt, method)() | |
expected = pd.Series([exp, None], dtype=ArrowDtype(pa.string())) | |
tm.assert_series_equal(result, expected) | |
def test_dt_strftime(request): | |
_require_timezone_database(request) | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
result = ser.dt.strftime("%Y-%m-%dT%H:%M:%S") | |
expected = pd.Series( | |
["2023-01-02T03:00:00.000000000", None], dtype=ArrowDtype(pa.string()) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_roundlike_tz_options_not_supported(method): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
with pytest.raises(NotImplementedError, match="ambiguous is not supported."): | |
getattr(ser.dt, method)("1h", ambiguous="NaT") | |
with pytest.raises(NotImplementedError, match="nonexistent is not supported."): | |
getattr(ser.dt, method)("1h", nonexistent="NaT") | |
def test_dt_roundlike_unsupported_freq(method): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
with pytest.raises(ValueError, match="freq='1B' is not supported"): | |
getattr(ser.dt, method)("1B") | |
with pytest.raises(ValueError, match="Must specify a valid frequency: None"): | |
getattr(ser.dt, method)(None) | |
def test_dt_ceil_year_floor(freq, method): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=1), None], | |
) | |
pa_dtype = ArrowDtype(pa.timestamp("ns")) | |
expected = getattr(ser.dt, method)(f"1{freq}").astype(pa_dtype) | |
result = getattr(ser.astype(pa_dtype).dt, method)(f"1{freq}") | |
tm.assert_series_equal(result, expected) | |
def test_dt_to_pydatetime(): | |
# GH 51859 | |
data = [datetime(2022, 1, 1), datetime(2023, 1, 1)] | |
ser = pd.Series(data, dtype=ArrowDtype(pa.timestamp("ns"))) | |
msg = "The behavior of ArrowTemporalProperties.to_pydatetime is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = ser.dt.to_pydatetime() | |
expected = np.array(data, dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
assert all(type(res) is datetime for res in result) | |
msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = ser.astype("datetime64[ns]").dt.to_pydatetime() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_dt_to_pydatetime_date_error(date_type): | |
# GH 52812 | |
ser = pd.Series( | |
[date(2022, 12, 31)], | |
dtype=ArrowDtype(getattr(pa, f"date{date_type}")()), | |
) | |
msg = "The behavior of ArrowTemporalProperties.to_pydatetime is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
with pytest.raises(ValueError, match="to_pydatetime cannot be called with"): | |
ser.dt.to_pydatetime() | |
def test_dt_tz_localize_unsupported_tz_options(): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
with pytest.raises(NotImplementedError, match="ambiguous='NaT' is not supported"): | |
ser.dt.tz_localize("UTC", ambiguous="NaT") | |
with pytest.raises(NotImplementedError, match="nonexistent='NaT' is not supported"): | |
ser.dt.tz_localize("UTC", nonexistent="NaT") | |
def test_dt_tz_localize_none(): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns", tz="US/Pacific")), | |
) | |
result = ser.dt.tz_localize(None) | |
expected = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_tz_localize(unit, request): | |
_require_timezone_database(request) | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp(unit)), | |
) | |
result = ser.dt.tz_localize("US/Pacific") | |
exp_data = pa.array( | |
[datetime(year=2023, month=1, day=2, hour=3), None], type=pa.timestamp(unit) | |
) | |
exp_data = pa.compute.assume_timezone(exp_data, "US/Pacific") | |
expected = pd.Series(ArrowExtensionArray(exp_data)) | |
tm.assert_series_equal(result, expected) | |
def test_dt_tz_localize_nonexistent(nonexistent, exp_date, request): | |
_require_timezone_database(request) | |
ser = pd.Series( | |
[datetime(year=2023, month=3, day=12, hour=2, minute=30), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
result = ser.dt.tz_localize("US/Pacific", nonexistent=nonexistent) | |
exp_data = pa.array([exp_date, None], type=pa.timestamp("ns")) | |
exp_data = pa.compute.assume_timezone(exp_data, "US/Pacific") | |
expected = pd.Series(ArrowExtensionArray(exp_data)) | |
tm.assert_series_equal(result, expected) | |
def test_dt_tz_convert_not_tz_raises(): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
with pytest.raises(TypeError, match="Cannot convert tz-naive timestamps"): | |
ser.dt.tz_convert("UTC") | |
def test_dt_tz_convert_none(): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns", "US/Pacific")), | |
) | |
result = ser.dt.tz_convert(None) | |
expected = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp("ns")), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_tz_convert(unit): | |
ser = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp(unit, "US/Pacific")), | |
) | |
result = ser.dt.tz_convert("US/Eastern") | |
expected = pd.Series( | |
[datetime(year=2023, month=1, day=2, hour=3), None], | |
dtype=ArrowDtype(pa.timestamp(unit, "US/Eastern")), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_as_unit(dtype): | |
# GH 52284 | |
ser = pd.Series([1000, None], dtype=dtype) | |
result = ser.dt.as_unit("ns") | |
expected = ser.astype(dtype.replace("ms", "ns")) | |
tm.assert_series_equal(result, expected) | |
def test_dt_timedelta_properties(prop, expected): | |
# GH 52284 | |
ser = pd.Series( | |
[ | |
pd.Timedelta( | |
days=1, | |
seconds=2, | |
microseconds=3, | |
nanoseconds=4, | |
), | |
None, | |
], | |
dtype=ArrowDtype(pa.duration("ns")), | |
) | |
result = getattr(ser.dt, prop) | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([expected, None], type=pa.int32())) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_timedelta_total_seconds(): | |
# GH 52284 | |
ser = pd.Series( | |
[ | |
pd.Timedelta( | |
days=1, | |
seconds=2, | |
microseconds=3, | |
nanoseconds=4, | |
), | |
None, | |
], | |
dtype=ArrowDtype(pa.duration("ns")), | |
) | |
result = ser.dt.total_seconds() | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([86402.000003, None], type=pa.float64())) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_dt_to_pytimedelta(): | |
# GH 52284 | |
data = [timedelta(1, 2, 3), timedelta(1, 2, 4)] | |
ser = pd.Series(data, dtype=ArrowDtype(pa.duration("ns"))) | |
result = ser.dt.to_pytimedelta() | |
expected = np.array(data, dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
assert all(type(res) is timedelta for res in result) | |
expected = ser.astype("timedelta64[ns]").dt.to_pytimedelta() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_dt_components(): | |
# GH 52284 | |
ser = pd.Series( | |
[ | |
pd.Timedelta( | |
days=1, | |
seconds=2, | |
microseconds=3, | |
nanoseconds=4, | |
), | |
None, | |
], | |
dtype=ArrowDtype(pa.duration("ns")), | |
) | |
result = ser.dt.components | |
expected = pd.DataFrame( | |
[[1, 0, 0, 2, 0, 3, 4], [None, None, None, None, None, None, None]], | |
columns=[ | |
"days", | |
"hours", | |
"minutes", | |
"seconds", | |
"milliseconds", | |
"microseconds", | |
"nanoseconds", | |
], | |
dtype="int32[pyarrow]", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_boolean_reduce_series_all_null(all_boolean_reductions, skipna): | |
# GH51624 | |
ser = pd.Series([None], dtype="float64[pyarrow]") | |
result = getattr(ser, all_boolean_reductions)(skipna=skipna) | |
if skipna: | |
expected = all_boolean_reductions == "all" | |
else: | |
expected = pd.NA | |
assert result is expected | |
def test_from_sequence_of_strings_boolean(): | |
true_strings = ["true", "TRUE", "True", "1", "1.0"] | |
false_strings = ["false", "FALSE", "False", "0", "0.0"] | |
nulls = [None] | |
strings = true_strings + false_strings + nulls | |
bools = ( | |
[True] * len(true_strings) + [False] * len(false_strings) + [None] * len(nulls) | |
) | |
result = ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa.bool_()) | |
expected = pd.array(bools, dtype="boolean[pyarrow]") | |
tm.assert_extension_array_equal(result, expected) | |
strings = ["True", "foo"] | |
with pytest.raises(pa.ArrowInvalid, match="Failed to parse"): | |
ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa.bool_()) | |
def test_concat_empty_arrow_backed_series(dtype): | |
# GH#51734 | |
ser = pd.Series([], dtype=dtype) | |
expected = ser.copy() | |
result = pd.concat([ser[np.array([], dtype=np.bool_)]]) | |
tm.assert_series_equal(result, expected) | |
def test_series_from_string_array(dtype): | |
arr = pa.array("the quick brown fox".split()) | |
ser = pd.Series(arr, dtype=dtype) | |
expected = pd.Series(ArrowExtensionArray(arr), dtype=dtype) | |
tm.assert_series_equal(ser, expected) | |
# _data was renamed to _pa_data | |
class OldArrowExtensionArray(ArrowExtensionArray): | |
def __getstate__(self): | |
state = super().__getstate__() | |
state["_data"] = state.pop("_pa_array") | |
return state | |
def test_pickle_old_arrowextensionarray(): | |
data = pa.array([1]) | |
expected = OldArrowExtensionArray(data) | |
result = pickle.loads(pickle.dumps(expected)) | |
tm.assert_extension_array_equal(result, expected) | |
assert result._pa_array == pa.chunked_array(data) | |
assert not hasattr(result, "_data") | |
def test_setitem_boolean_replace_with_mask_segfault(): | |
# GH#52059 | |
N = 145_000 | |
arr = ArrowExtensionArray(pa.chunked_array([np.ones((N,), dtype=np.bool_)])) | |
expected = arr.copy() | |
arr[np.zeros((N,), dtype=np.bool_)] = False | |
assert arr._pa_array == expected._pa_array | |
def test_conversion_large_dtypes_from_numpy_array(data, arrow_dtype): | |
dtype = ArrowDtype(arrow_dtype) | |
result = pd.array(np.array(data), dtype=dtype) | |
expected = pd.array(data, dtype=dtype) | |
tm.assert_extension_array_equal(result, expected) | |
def test_concat_null_array(): | |
df = pd.DataFrame({"a": [None, None]}, dtype=ArrowDtype(pa.null())) | |
df2 = pd.DataFrame({"a": [0, 1]}, dtype="int64[pyarrow]") | |
result = pd.concat([df, df2], ignore_index=True) | |
expected = pd.DataFrame({"a": [None, None, 0, 1]}, dtype="int64[pyarrow]") | |
tm.assert_frame_equal(result, expected) | |
def test_describe_numeric_data(pa_type): | |
# GH 52470 | |
data = pd.Series([1, 2, 3], dtype=ArrowDtype(pa_type)) | |
result = data.describe() | |
expected = pd.Series( | |
[3, 2, 1, 1, 1.5, 2.0, 2.5, 3], | |
dtype=ArrowDtype(pa.float64()), | |
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_describe_timedelta_data(pa_type): | |
# GH53001 | |
data = pd.Series(range(1, 10), dtype=ArrowDtype(pa_type)) | |
result = data.describe() | |
expected = pd.Series( | |
[9] + pd.to_timedelta([5, 2, 1, 3, 5, 7, 9], unit=pa_type.unit).tolist(), | |
dtype=object, | |
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_describe_datetime_data(pa_type): | |
# GH53001 | |
data = pd.Series(range(1, 10), dtype=ArrowDtype(pa_type)) | |
result = data.describe() | |
expected = pd.Series( | |
[9] | |
+ [ | |
pd.Timestamp(v, tz=pa_type.tz, unit=pa_type.unit) | |
for v in [5, 1, 3, 5, 7, 9] | |
], | |
dtype=object, | |
index=["count", "mean", "min", "25%", "50%", "75%", "max"], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_quantile_temporal(pa_type): | |
# GH52678 | |
data = [1, 2, 3] | |
ser = pd.Series(data, dtype=ArrowDtype(pa_type)) | |
result = ser.quantile(0.1) | |
expected = ser[0] | |
assert result == expected | |
def test_date32_repr(): | |
# GH48238 | |
arrow_dt = pa.array([date.fromisoformat("2020-01-01")], type=pa.date32()) | |
ser = pd.Series(arrow_dt, dtype=ArrowDtype(arrow_dt.type)) | |
assert repr(ser) == "0 2020-01-01\ndtype: date32[day][pyarrow]" | |
def test_duration_overflow_from_ndarray_containing_nat(): | |
# GH52843 | |
data_ts = pd.to_datetime([1, None]) | |
data_td = pd.to_timedelta([1, None]) | |
ser_ts = pd.Series(data_ts, dtype=ArrowDtype(pa.timestamp("ns"))) | |
ser_td = pd.Series(data_td, dtype=ArrowDtype(pa.duration("ns"))) | |
result = ser_ts + ser_td | |
expected = pd.Series([2, None], dtype=ArrowDtype(pa.timestamp("ns"))) | |
tm.assert_series_equal(result, expected) | |
def test_infer_dtype_pyarrow_dtype(data, request): | |
res = lib.infer_dtype(data) | |
assert res != "unknown-array" | |
if data._hasna and res in ["floating", "datetime64", "timedelta64"]: | |
mark = pytest.mark.xfail( | |
reason="in infer_dtype pd.NA is not ignored in these cases " | |
"even with skipna=True in the list(data) check below" | |
) | |
request.applymarker(mark) | |
assert res == lib.infer_dtype(list(data), skipna=True) | |
def test_from_sequence_temporal(pa_type): | |
# GH 53171 | |
val = 3 | |
unit = pa_type.unit | |
if pa.types.is_duration(pa_type): | |
seq = [pd.Timedelta(val, unit=unit).as_unit(unit)] | |
else: | |
seq = [pd.Timestamp(val, unit=unit, tz=pa_type.tz).as_unit(unit)] | |
result = ArrowExtensionArray._from_sequence(seq, dtype=pa_type) | |
expected = ArrowExtensionArray(pa.array([val], type=pa_type)) | |
tm.assert_extension_array_equal(result, expected) | |
def test_setitem_temporal(pa_type): | |
# GH 53171 | |
unit = pa_type.unit | |
if pa.types.is_duration(pa_type): | |
val = pd.Timedelta(1, unit=unit).as_unit(unit) | |
else: | |
val = pd.Timestamp(1, unit=unit, tz=pa_type.tz).as_unit(unit) | |
arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) | |
result = arr.copy() | |
result[:] = val | |
expected = ArrowExtensionArray(pa.array([1, 1, 1], type=pa_type)) | |
tm.assert_extension_array_equal(result, expected) | |
def test_arithmetic_temporal(pa_type, request): | |
# GH 53171 | |
arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) | |
unit = pa_type.unit | |
result = arr - pd.Timedelta(1, unit=unit).as_unit(unit) | |
expected = ArrowExtensionArray(pa.array([0, 1, 2], type=pa_type)) | |
tm.assert_extension_array_equal(result, expected) | |
def test_comparison_temporal(pa_type): | |
# GH 53171 | |
unit = pa_type.unit | |
if pa.types.is_duration(pa_type): | |
val = pd.Timedelta(1, unit=unit).as_unit(unit) | |
else: | |
val = pd.Timestamp(1, unit=unit, tz=pa_type.tz).as_unit(unit) | |
arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) | |
result = arr > val | |
expected = ArrowExtensionArray(pa.array([False, True, True], type=pa.bool_())) | |
tm.assert_extension_array_equal(result, expected) | |
def test_getitem_temporal(pa_type): | |
# GH 53326 | |
arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) | |
result = arr[1] | |
if pa.types.is_duration(pa_type): | |
expected = pd.Timedelta(2, unit=pa_type.unit).as_unit(pa_type.unit) | |
assert isinstance(result, pd.Timedelta) | |
else: | |
expected = pd.Timestamp(2, unit=pa_type.unit, tz=pa_type.tz).as_unit( | |
pa_type.unit | |
) | |
assert isinstance(result, pd.Timestamp) | |
assert result.unit == expected.unit | |
assert result == expected | |
def test_iter_temporal(pa_type): | |
# GH 53326 | |
arr = ArrowExtensionArray(pa.array([1, None], type=pa_type)) | |
result = list(arr) | |
if pa.types.is_duration(pa_type): | |
expected = [ | |
pd.Timedelta(1, unit=pa_type.unit).as_unit(pa_type.unit), | |
pd.NA, | |
] | |
assert isinstance(result[0], pd.Timedelta) | |
else: | |
expected = [ | |
pd.Timestamp(1, unit=pa_type.unit, tz=pa_type.tz).as_unit(pa_type.unit), | |
pd.NA, | |
] | |
assert isinstance(result[0], pd.Timestamp) | |
assert result[0].unit == expected[0].unit | |
assert result == expected | |
def test_groupby_series_size_returns_pa_int(data): | |
# GH 54132 | |
ser = pd.Series(data[:3], index=["a", "a", "b"]) | |
result = ser.groupby(level=0).size() | |
expected = pd.Series([2, 1], dtype="int64[pyarrow]", index=["a", "b"]) | |
tm.assert_series_equal(result, expected) | |
def test_to_numpy_temporal(pa_type, dtype): | |
# GH 53326 | |
# GH 55997: Return datetime64/timedelta64 types with NaT if possible | |
arr = ArrowExtensionArray(pa.array([1, None], type=pa_type)) | |
result = arr.to_numpy(dtype=dtype) | |
if pa.types.is_duration(pa_type): | |
value = pd.Timedelta(1, unit=pa_type.unit).as_unit(pa_type.unit) | |
else: | |
value = pd.Timestamp(1, unit=pa_type.unit, tz=pa_type.tz).as_unit(pa_type.unit) | |
if dtype == object or (pa.types.is_timestamp(pa_type) and pa_type.tz is not None): | |
if dtype == object: | |
na = pd.NA | |
else: | |
na = pd.NaT | |
expected = np.array([value, na], dtype=object) | |
assert result[0].unit == value.unit | |
else: | |
na = pa_type.to_pandas_dtype().type("nat", pa_type.unit) | |
value = value.to_numpy() | |
expected = np.array([value, na]) | |
assert np.datetime_data(result[0])[0] == pa_type.unit | |
tm.assert_numpy_array_equal(result, expected) | |
def test_groupby_count_return_arrow_dtype(data_missing): | |
df = pd.DataFrame({"A": [1, 1], "B": data_missing, "C": data_missing}) | |
result = df.groupby("A").count() | |
expected = pd.DataFrame( | |
[[1, 1]], | |
index=pd.Index([1], name="A"), | |
columns=["B", "C"], | |
dtype="int64[pyarrow]", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_fixed_size_list(): | |
# GH#55000 | |
ser = pd.Series( | |
[[1, 2], [3, 4]], dtype=ArrowDtype(pa.list_(pa.int64(), list_size=2)) | |
) | |
result = ser.dtype.type | |
assert result == list | |
def test_arrowextensiondtype_dataframe_repr(): | |
# GH 54062 | |
df = pd.DataFrame( | |
pd.period_range("2012", periods=3), | |
columns=["col"], | |
dtype=ArrowDtype(ArrowPeriodType("D")), | |
) | |
result = repr(df) | |
# TODO: repr value may not be expected; address how | |
# pyarrow.ExtensionType values are displayed | |
expected = " col\n0 15340\n1 15341\n2 15342" | |
assert result == expected | |
def test_pow_missing_operand(): | |
# GH 55512 | |
k = pd.Series([2, None], dtype="int64[pyarrow]") | |
result = k.pow(None, fill_value=3) | |
expected = pd.Series([8, None], dtype="int64[pyarrow]") | |
tm.assert_series_equal(result, expected) | |
def test_duration_fillna_numpy(pa_type): | |
# GH 54707 | |
ser1 = pd.Series([None, 2], dtype=ArrowDtype(pa_type)) | |
ser2 = pd.Series(np.array([1, 3], dtype=f"m8[{pa_type.unit}]")) | |
result = ser1.fillna(ser2) | |
expected = pd.Series([1, 2], dtype=ArrowDtype(pa_type)) | |
tm.assert_series_equal(result, expected) | |
def test_comparison_not_propagating_arrow_error(): | |
# GH#54944 | |
a = pd.Series([1 << 63], dtype="uint64[pyarrow]") | |
b = pd.Series([None], dtype="int64[pyarrow]") | |
with pytest.raises(pa.lib.ArrowInvalid, match="Integer value"): | |
a < b | |
def test_factorize_chunked_dictionary(): | |
# GH 54844 | |
pa_array = pa.chunked_array( | |
[pa.array(["a"]).dictionary_encode(), pa.array(["b"]).dictionary_encode()] | |
) | |
ser = pd.Series(ArrowExtensionArray(pa_array)) | |
res_indices, res_uniques = ser.factorize() | |
exp_indicies = np.array([0, 1], dtype=np.intp) | |
exp_uniques = pd.Index(ArrowExtensionArray(pa_array.combine_chunks())) | |
tm.assert_numpy_array_equal(res_indices, exp_indicies) | |
tm.assert_index_equal(res_uniques, exp_uniques) | |
def test_dictionary_astype_categorical(): | |
# GH#56672 | |
arrs = [ | |
pa.array(np.array(["a", "x", "c", "a"])).dictionary_encode(), | |
pa.array(np.array(["a", "d", "c"])).dictionary_encode(), | |
] | |
ser = pd.Series(ArrowExtensionArray(pa.chunked_array(arrs))) | |
result = ser.astype("category") | |
categories = pd.Index(["a", "x", "c", "d"], dtype=ArrowDtype(pa.string())) | |
expected = pd.Series( | |
["a", "x", "c", "a", "a", "d", "c"], | |
dtype=pd.CategoricalDtype(categories=categories), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_arrow_floordiv(): | |
# GH 55561 | |
a = pd.Series([-7], dtype="int64[pyarrow]") | |
b = pd.Series([4], dtype="int64[pyarrow]") | |
expected = pd.Series([-2], dtype="int64[pyarrow]") | |
result = a // b | |
tm.assert_series_equal(result, expected) | |
def test_arrow_floordiv_large_values(): | |
# GH 56645 | |
a = pd.Series([1425801600000000000], dtype="int64[pyarrow]") | |
expected = pd.Series([1425801600000], dtype="int64[pyarrow]") | |
result = a // 1_000_000 | |
tm.assert_series_equal(result, expected) | |
def test_arrow_floordiv_large_integral_result(dtype): | |
# GH 56676 | |
a = pd.Series([18014398509481983], dtype=dtype) | |
result = a // 1 | |
tm.assert_series_equal(result, a) | |
def test_arrow_floordiv_larger_divisor(pa_type): | |
# GH 56676 | |
dtype = ArrowDtype(pa_type) | |
a = pd.Series([-23], dtype=dtype) | |
result = a // 24 | |
expected = pd.Series([-1], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
def test_arrow_floordiv_integral_invalid(pa_type): | |
# GH 56676 | |
min_value = np.iinfo(pa_type.to_pandas_dtype()).min | |
a = pd.Series([min_value], dtype=ArrowDtype(pa_type)) | |
with pytest.raises(pa.lib.ArrowInvalid, match="overflow|not in range"): | |
a // -1 | |
with pytest.raises(pa.lib.ArrowInvalid, match="divide by zero"): | |
a // 0 | |
def test_arrow_floordiv_floating_0_divisor(dtype): | |
# GH 56676 | |
a = pd.Series([2], dtype=dtype) | |
result = a // 0 | |
expected = pd.Series([float("inf")], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
def test_astype_int_with_null_to_numpy_dtype(dtype): | |
# GH 57093 | |
ser = pd.Series([1, None], dtype="int64[pyarrow]") | |
result = ser.astype(dtype) | |
expected = pd.Series([1, None], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
def test_arrow_integral_floordiv_large_values(pa_type): | |
# GH 56676 | |
max_value = np.iinfo(pa_type.to_pandas_dtype()).max | |
dtype = ArrowDtype(pa_type) | |
a = pd.Series([max_value], dtype=dtype) | |
b = pd.Series([1], dtype=dtype) | |
result = a // b | |
tm.assert_series_equal(result, a) | |
def test_arrow_true_division_large_divisor(dtype): | |
# GH 56706 | |
a = pd.Series([0], dtype=dtype) | |
b = pd.Series([18014398509481983], dtype=dtype) | |
expected = pd.Series([0], dtype="float64[pyarrow]") | |
result = a / b | |
tm.assert_series_equal(result, expected) | |
def test_arrow_floor_division_large_divisor(dtype): | |
# GH 56706 | |
a = pd.Series([0], dtype=dtype) | |
b = pd.Series([18014398509481983], dtype=dtype) | |
expected = pd.Series([0], dtype=dtype) | |
result = a // b | |
tm.assert_series_equal(result, expected) | |
def test_string_to_datetime_parsing_cast(): | |
# GH 56266 | |
string_dates = ["2020-01-01 04:30:00", "2020-01-02 00:00:00", "2020-01-03 00:00:00"] | |
result = pd.Series(string_dates, dtype="timestamp[ns][pyarrow]") | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array(pd.to_datetime(string_dates), from_pandas=True)) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_string_to_time_parsing_cast(): | |
# GH 56463 | |
string_times = ["11:41:43.076160"] | |
result = pd.Series(string_times, dtype="time64[us][pyarrow]") | |
expected = pd.Series( | |
ArrowExtensionArray(pa.array([time(11, 41, 43, 76160)], from_pandas=True)) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_to_numpy_float(): | |
# GH#56267 | |
ser = pd.Series([32, 40, None], dtype="float[pyarrow]") | |
result = ser.astype("float64") | |
expected = pd.Series([32, 40, np.nan], dtype="float64") | |
tm.assert_series_equal(result, expected) | |
def test_to_numpy_timestamp_to_int(): | |
# GH 55997 | |
ser = pd.Series(["2020-01-01 04:30:00"], dtype="timestamp[ns][pyarrow]") | |
result = ser.to_numpy(dtype=np.int64) | |
expected = np.array([1577853000000000000]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_map_numeric_na_action(): | |
ser = pd.Series([32, 40, None], dtype="int64[pyarrow]") | |
result = ser.map(lambda x: 42, na_action="ignore") | |
expected = pd.Series([42.0, 42.0, np.nan], dtype="float64") | |
tm.assert_series_equal(result, expected) | |