peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/common.py
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
from pandas import ( | |
DataFrame, | |
concat, | |
) | |
if TYPE_CHECKING: | |
from pandas._typing import AxisInt | |
def _check_mixed_float(df, dtype=None): | |
# float16 are most likely to be upcasted to float32 | |
dtypes = {"A": "float32", "B": "float32", "C": "float16", "D": "float64"} | |
if isinstance(dtype, str): | |
dtypes = {k: dtype for k, v in dtypes.items()} | |
elif isinstance(dtype, dict): | |
dtypes.update(dtype) | |
if dtypes.get("A"): | |
assert df.dtypes["A"] == dtypes["A"] | |
if dtypes.get("B"): | |
assert df.dtypes["B"] == dtypes["B"] | |
if dtypes.get("C"): | |
assert df.dtypes["C"] == dtypes["C"] | |
if dtypes.get("D"): | |
assert df.dtypes["D"] == dtypes["D"] | |
def _check_mixed_int(df, dtype=None): | |
dtypes = {"A": "int32", "B": "uint64", "C": "uint8", "D": "int64"} | |
if isinstance(dtype, str): | |
dtypes = {k: dtype for k, v in dtypes.items()} | |
elif isinstance(dtype, dict): | |
dtypes.update(dtype) | |
if dtypes.get("A"): | |
assert df.dtypes["A"] == dtypes["A"] | |
if dtypes.get("B"): | |
assert df.dtypes["B"] == dtypes["B"] | |
if dtypes.get("C"): | |
assert df.dtypes["C"] == dtypes["C"] | |
if dtypes.get("D"): | |
assert df.dtypes["D"] == dtypes["D"] | |
def zip_frames(frames: list[DataFrame], axis: AxisInt = 1) -> DataFrame: | |
""" | |
take a list of frames, zip them together under the | |
assumption that these all have the first frames' index/columns. | |
Returns | |
------- | |
new_frame : DataFrame | |
""" | |
if axis == 1: | |
columns = frames[0].columns | |
zipped = [f.loc[:, c] for c in columns for f in frames] | |
return concat(zipped, axis=1) | |
else: | |
index = frames[0].index | |
zipped = [f.loc[i, :] for i in index for f in frames] | |
return DataFrame(zipped) | |