peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/conftest.py
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
NaT, | |
date_range, | |
) | |
def datetime_frame() -> DataFrame: | |
""" | |
Fixture for DataFrame of floats with DatetimeIndex | |
Columns are ['A', 'B', 'C', 'D'] | |
""" | |
return DataFrame( | |
np.random.default_rng(2).standard_normal((100, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=100, freq="B"), | |
) | |
def float_string_frame(): | |
""" | |
Fixture for DataFrame of floats and strings with index of unique strings | |
Columns are ['A', 'B', 'C', 'D', 'foo']. | |
""" | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 4)), | |
index=Index([f"foo_{i}" for i in range(30)], dtype=object), | |
columns=Index(list("ABCD"), dtype=object), | |
) | |
df["foo"] = "bar" | |
return df | |
def mixed_float_frame(): | |
""" | |
Fixture for DataFrame of different float types with index of unique strings | |
Columns are ['A', 'B', 'C', 'D']. | |
""" | |
df = DataFrame( | |
{ | |
col: np.random.default_rng(2).random(30, dtype=dtype) | |
for col, dtype in zip( | |
list("ABCD"), ["float32", "float32", "float32", "float64"] | |
) | |
}, | |
index=Index([f"foo_{i}" for i in range(30)], dtype=object), | |
) | |
# not supported by numpy random | |
df["C"] = df["C"].astype("float16") | |
return df | |
def mixed_int_frame(): | |
""" | |
Fixture for DataFrame of different int types with index of unique strings | |
Columns are ['A', 'B', 'C', 'D']. | |
""" | |
return DataFrame( | |
{ | |
col: np.ones(30, dtype=dtype) | |
for col, dtype in zip(list("ABCD"), ["int32", "uint64", "uint8", "int64"]) | |
}, | |
index=Index([f"foo_{i}" for i in range(30)], dtype=object), | |
) | |
def timezone_frame(): | |
""" | |
Fixture for DataFrame of date_range Series with different time zones | |
Columns are ['A', 'B', 'C']; some entries are missing | |
A B C | |
0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00 | |
1 2013-01-02 NaT NaT | |
2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00 | |
""" | |
df = DataFrame( | |
{ | |
"A": date_range("20130101", periods=3), | |
"B": date_range("20130101", periods=3, tz="US/Eastern"), | |
"C": date_range("20130101", periods=3, tz="CET"), | |
} | |
) | |
df.iloc[1, 1] = NaT | |
df.iloc[1, 2] = NaT | |
return df | |