peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/frame
/test_ufunc.py
from functools import partial | |
import re | |
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.api.types import is_extension_array_dtype | |
dtypes = [ | |
"int64", | |
"Int64", | |
{"A": "int64", "B": "Int64"}, | |
] | |
def test_unary_unary(dtype): | |
# unary input, unary output | |
values = np.array([[-1, -1], [1, 1]], dtype="int64") | |
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype) | |
result = np.positive(df) | |
expected = pd.DataFrame( | |
np.positive(values), index=df.index, columns=df.columns | |
).astype(dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_unary_binary(request, dtype): | |
# unary input, binary output | |
if is_extension_array_dtype(dtype) or isinstance(dtype, dict): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="Extension / mixed with multiple outputs not implemented." | |
) | |
) | |
values = np.array([[-1, -1], [1, 1]], dtype="int64") | |
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype) | |
result_pandas = np.modf(df) | |
assert isinstance(result_pandas, tuple) | |
assert len(result_pandas) == 2 | |
expected_numpy = np.modf(values) | |
for result, b in zip(result_pandas, expected_numpy): | |
expected = pd.DataFrame(b, index=df.index, columns=df.columns) | |
tm.assert_frame_equal(result, expected) | |
def test_binary_input_dispatch_binop(dtype): | |
# binop ufuncs are dispatched to our dunder methods. | |
values = np.array([[-1, -1], [1, 1]], dtype="int64") | |
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype) | |
result = np.add(df, df) | |
expected = pd.DataFrame( | |
np.add(values, values), index=df.index, columns=df.columns | |
).astype(dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_ufunc_passes_args(func, arg, expected): | |
# GH#40662 | |
arr = np.array([[1, 2], [3, 4]]) | |
df = pd.DataFrame(arr) | |
result_inplace = np.zeros_like(arr) | |
# 1-argument ufunc | |
if arg is None: | |
result = func(df, out=result_inplace) | |
else: | |
result = func(df, arg, out=result_inplace) | |
expected = np.array(expected).reshape(2, 2) | |
tm.assert_numpy_array_equal(result_inplace, expected) | |
expected = pd.DataFrame(expected) | |
tm.assert_frame_equal(result, expected) | |
def test_binary_input_aligns_columns(request, dtype_a, dtype_b): | |
if ( | |
is_extension_array_dtype(dtype_a) | |
or isinstance(dtype_a, dict) | |
or is_extension_array_dtype(dtype_b) | |
or isinstance(dtype_b, dict) | |
): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="Extension / mixed with multiple inputs not implemented." | |
) | |
) | |
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a) | |
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict): | |
dtype_b = dtype_b.copy() | |
dtype_b["C"] = dtype_b.pop("B") | |
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b) | |
# As of 2.0, align first before applying the ufunc | |
result = np.heaviside(df1, df2) | |
expected = np.heaviside( | |
np.array([[1, 3, np.nan], [2, 4, np.nan]]), | |
np.array([[1, np.nan, 3], [2, np.nan, 4]]), | |
) | |
expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"]) | |
tm.assert_frame_equal(result, expected) | |
result = np.heaviside(df1, df2.values) | |
expected = pd.DataFrame([[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"]) | |
tm.assert_frame_equal(result, expected) | |
def test_binary_input_aligns_index(request, dtype): | |
if is_extension_array_dtype(dtype) or isinstance(dtype, dict): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="Extension / mixed with multiple inputs not implemented." | |
) | |
) | |
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype) | |
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype) | |
result = np.heaviside(df1, df2) | |
expected = np.heaviside( | |
np.array([[1, 3], [3, 4], [np.nan, np.nan]]), | |
np.array([[1, 3], [np.nan, np.nan], [3, 4]]), | |
) | |
# TODO(FloatArray): this will be Float64Dtype. | |
expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"]) | |
tm.assert_frame_equal(result, expected) | |
result = np.heaviside(df1, df2.values) | |
expected = pd.DataFrame( | |
[[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"], index=["a", "b"] | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_binary_frame_series_raises(): | |
# We don't currently implement | |
df = pd.DataFrame({"A": [1, 2]}) | |
with pytest.raises(NotImplementedError, match="logaddexp"): | |
np.logaddexp(df, df["A"]) | |
with pytest.raises(NotImplementedError, match="logaddexp"): | |
np.logaddexp(df["A"], df) | |
def test_unary_accumulate_axis(): | |
# https://github.com/pandas-dev/pandas/issues/39259 | |
df = pd.DataFrame({"a": [1, 3, 2, 4]}) | |
result = np.maximum.accumulate(df) | |
expected = pd.DataFrame({"a": [1, 3, 3, 4]}) | |
tm.assert_frame_equal(result, expected) | |
df = pd.DataFrame({"a": [1, 3, 2, 4], "b": [0.1, 4.0, 3.0, 2.0]}) | |
result = np.maximum.accumulate(df) | |
# in theory could preserve int dtype for default axis=0 | |
expected = pd.DataFrame({"a": [1.0, 3.0, 3.0, 4.0], "b": [0.1, 4.0, 4.0, 4.0]}) | |
tm.assert_frame_equal(result, expected) | |
result = np.maximum.accumulate(df, axis=0) | |
tm.assert_frame_equal(result, expected) | |
result = np.maximum.accumulate(df, axis=1) | |
expected = pd.DataFrame({"a": [1.0, 3.0, 2.0, 4.0], "b": [1.0, 4.0, 3.0, 4.0]}) | |
tm.assert_frame_equal(result, expected) | |
def test_frame_outer_disallowed(): | |
df = pd.DataFrame({"A": [1, 2]}) | |
with pytest.raises(NotImplementedError, match=""): | |
# deprecation enforced in 2.0 | |
np.subtract.outer(df, df) | |
def test_alignment_deprecation_enforced(): | |
# Enforced in 2.0 | |
# https://github.com/pandas-dev/pandas/issues/39184 | |
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]}) | |
s1 = pd.Series([1, 2], index=["a", "b"]) | |
s2 = pd.Series([1, 2], index=["b", "c"]) | |
# binary dataframe / dataframe | |
expected = pd.DataFrame({"a": [2, 4, 6], "b": [8, 10, 12]}) | |
with tm.assert_produces_warning(None): | |
# aligned -> no warning! | |
result = np.add(df1, df1) | |
tm.assert_frame_equal(result, expected) | |
result = np.add(df1, df2.values) | |
tm.assert_frame_equal(result, expected) | |
result = np.add(df1, df2) | |
expected = pd.DataFrame({"a": [np.nan] * 3, "b": [5, 7, 9], "c": [np.nan] * 3}) | |
tm.assert_frame_equal(result, expected) | |
result = np.add(df1.values, df2) | |
expected = pd.DataFrame({"b": [2, 4, 6], "c": [8, 10, 12]}) | |
tm.assert_frame_equal(result, expected) | |
# binary dataframe / series | |
expected = pd.DataFrame({"a": [2, 3, 4], "b": [6, 7, 8]}) | |
with tm.assert_produces_warning(None): | |
# aligned -> no warning! | |
result = np.add(df1, s1) | |
tm.assert_frame_equal(result, expected) | |
result = np.add(df1, s2.values) | |
tm.assert_frame_equal(result, expected) | |
expected = pd.DataFrame( | |
{"a": [np.nan] * 3, "b": [5.0, 6.0, 7.0], "c": [np.nan] * 3} | |
) | |
result = np.add(df1, s2) | |
tm.assert_frame_equal(result, expected) | |
msg = "Cannot apply ufunc <ufunc 'add'> to mixed DataFrame and Series inputs." | |
with pytest.raises(NotImplementedError, match=msg): | |
np.add(s2, df1) | |
def test_alignment_deprecation_many_inputs_enforced(): | |
# Enforced in 2.0 | |
# https://github.com/pandas-dev/pandas/issues/39184 | |
# test that the deprecation also works with > 2 inputs -> using a numba | |
# written ufunc for this because numpy itself doesn't have such ufuncs | |
numba = pytest.importorskip("numba") | |
def my_ufunc(x, y, z): | |
return x + y + z | |
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]}) | |
df3 = pd.DataFrame({"a": [1, 2, 3], "c": [4, 5, 6]}) | |
result = my_ufunc(df1, df2, df3) | |
expected = pd.DataFrame(np.full((3, 3), np.nan), columns=["a", "b", "c"]) | |
tm.assert_frame_equal(result, expected) | |
# all aligned -> no warning | |
with tm.assert_produces_warning(None): | |
result = my_ufunc(df1, df1, df1) | |
expected = pd.DataFrame([[3.0, 12.0], [6.0, 15.0], [9.0, 18.0]], columns=["a", "b"]) | |
tm.assert_frame_equal(result, expected) | |
# mixed frame / arrays | |
msg = ( | |
r"operands could not be broadcast together with shapes \(3,3\) \(3,3\) \(3,2\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
my_ufunc(df1, df2, df3.values) | |
# single frame -> no warning | |
with tm.assert_produces_warning(None): | |
result = my_ufunc(df1, df2.values, df3.values) | |
tm.assert_frame_equal(result, expected) | |
# takes indices of first frame | |
msg = ( | |
r"operands could not be broadcast together with shapes \(3,2\) \(3,3\) \(3,3\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
my_ufunc(df1.values, df2, df3) | |
def test_array_ufuncs_for_many_arguments(): | |
# GH39853 | |
def add3(x, y, z): | |
return x + y + z | |
ufunc = np.frompyfunc(add3, 3, 1) | |
df = pd.DataFrame([[1, 2], [3, 4]]) | |
result = ufunc(df, df, 1) | |
expected = pd.DataFrame([[3, 5], [7, 9]], dtype=object) | |
tm.assert_frame_equal(result, expected) | |
ser = pd.Series([1, 2]) | |
msg = ( | |
"Cannot apply ufunc <ufunc 'add3 (vectorized)'> " | |
"to mixed DataFrame and Series inputs." | |
) | |
with pytest.raises(NotImplementedError, match=re.escape(msg)): | |
ufunc(df, df, ser) | |