peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexes
/test_base.py
from collections import defaultdict | |
from datetime import datetime | |
from functools import partial | |
import math | |
import operator | |
import re | |
import numpy as np | |
import pytest | |
from pandas.compat import IS64 | |
from pandas.errors import InvalidIndexError | |
import pandas.util._test_decorators as td | |
from pandas.core.dtypes.common import ( | |
is_any_real_numeric_dtype, | |
is_numeric_dtype, | |
is_object_dtype, | |
) | |
import pandas as pd | |
from pandas import ( | |
CategoricalIndex, | |
DataFrame, | |
DatetimeIndex, | |
IntervalIndex, | |
PeriodIndex, | |
RangeIndex, | |
Series, | |
TimedeltaIndex, | |
date_range, | |
period_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.indexes.api import ( | |
Index, | |
MultiIndex, | |
_get_combined_index, | |
ensure_index, | |
ensure_index_from_sequences, | |
) | |
class TestIndex: | |
def simple_index(self) -> Index: | |
return Index(list("abcde")) | |
def test_can_hold_identifiers(self, simple_index): | |
index = simple_index | |
key = index[0] | |
assert index._can_hold_identifiers_and_holds_name(key) is True | |
def test_new_axis(self, index): | |
# TODO: a bunch of scattered tests check this deprecation is enforced. | |
# de-duplicate/centralize them. | |
with pytest.raises(ValueError, match="Multi-dimensional indexing"): | |
# GH#30588 multi-dimensional indexing deprecated | |
index[None, :] | |
def test_constructor_regular(self, index): | |
tm.assert_contains_all(index, index) | |
def test_constructor_casting(self, index): | |
# casting | |
arr = np.array(index) | |
new_index = Index(arr) | |
tm.assert_contains_all(arr, new_index) | |
tm.assert_index_equal(index, new_index) | |
def test_constructor_copy(self, index, using_infer_string): | |
arr = np.array(index) | |
new_index = Index(arr, copy=True, name="name") | |
assert isinstance(new_index, Index) | |
assert new_index.name == "name" | |
if using_infer_string: | |
tm.assert_extension_array_equal( | |
new_index.values, pd.array(arr, dtype="string[pyarrow_numpy]") | |
) | |
else: | |
tm.assert_numpy_array_equal(arr, new_index.values) | |
arr[0] = "SOMEBIGLONGSTRING" | |
assert new_index[0] != "SOMEBIGLONGSTRING" | |
def test_constructor_from_index_dtlike(self, cast_as_obj, index): | |
if cast_as_obj: | |
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): | |
result = Index(index.astype(object)) | |
else: | |
result = Index(index) | |
tm.assert_index_equal(result, index) | |
if isinstance(index, DatetimeIndex): | |
assert result.tz == index.tz | |
if cast_as_obj: | |
# GH#23524 check that Index(dti, dtype=object) does not | |
# incorrectly raise ValueError, and that nanoseconds are not | |
# dropped | |
index += pd.Timedelta(nanoseconds=50) | |
result = Index(index, dtype=object) | |
assert result.dtype == np.object_ | |
assert list(result) == list(index) | |
def test_constructor_from_series_dtlike(self, index, has_tz): | |
result = Index(Series(index)) | |
tm.assert_index_equal(result, index) | |
if has_tz: | |
assert result.tz == index.tz | |
def test_constructor_from_series_freq(self): | |
# GH 6273 | |
# create from a series, passing a freq | |
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"] | |
expected = DatetimeIndex(dts, freq="MS") | |
s = Series(pd.to_datetime(dts)) | |
result = DatetimeIndex(s, freq="MS") | |
tm.assert_index_equal(result, expected) | |
def test_constructor_from_frame_series_freq(self, using_infer_string): | |
# GH 6273 | |
# create from a series, passing a freq | |
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"] | |
expected = DatetimeIndex(dts, freq="MS") | |
df = DataFrame(np.random.default_rng(2).random((5, 3))) | |
df["date"] = dts | |
result = DatetimeIndex(df["date"], freq="MS") | |
dtype = object if not using_infer_string else "string" | |
assert df["date"].dtype == dtype | |
expected.name = "date" | |
tm.assert_index_equal(result, expected) | |
expected = Series(dts, name="date") | |
tm.assert_series_equal(df["date"], expected) | |
# GH 6274 | |
# infer freq of same | |
if not using_infer_string: | |
# Doesn't work with arrow strings | |
freq = pd.infer_freq(df["date"]) | |
assert freq == "MS" | |
def test_constructor_int_dtype_nan(self): | |
# see gh-15187 | |
data = [np.nan] | |
expected = Index(data, dtype=np.float64) | |
result = Index(data, dtype="float") | |
tm.assert_index_equal(result, expected) | |
def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val): | |
# GH 13467 | |
na_list = [na_val, na_val] | |
expected = klass(na_list) | |
assert expected.dtype == dtype | |
result = Index(na_list) | |
tm.assert_index_equal(result, expected) | |
result = Index(np.array(na_list)) | |
tm.assert_index_equal(result, expected) | |
def test_constructor_simple_new(self, vals, dtype): | |
index = Index(vals, name=dtype) | |
result = index._simple_new(index.values, dtype) | |
tm.assert_index_equal(result, index) | |
def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass): | |
# Test constructing with a datetimetz dtype | |
# .values produces numpy datetimes, so these are considered naive | |
# .asi8 produces integers, so these are considered epoch timestamps | |
# ^the above will be true in a later version. Right now we `.view` | |
# the i8 values as NS_DTYPE, effectively treating them as wall times. | |
index = date_range("2011-01-01", periods=5) | |
arg = getattr(index, attr) | |
index = index.tz_localize(tz_naive_fixture) | |
dtype = index.dtype | |
# As of 2.0 astype raises on dt64.astype(dt64tz) | |
err = tz_naive_fixture is not None | |
msg = "Cannot use .astype to convert from timezone-naive dtype to" | |
if attr == "asi8": | |
result = DatetimeIndex(arg).tz_localize(tz_naive_fixture) | |
tm.assert_index_equal(result, index) | |
elif klass is Index: | |
with pytest.raises(TypeError, match="unexpected keyword"): | |
klass(arg, tz=tz_naive_fixture) | |
else: | |
result = klass(arg, tz=tz_naive_fixture) | |
tm.assert_index_equal(result, index) | |
if attr == "asi8": | |
if err: | |
with pytest.raises(TypeError, match=msg): | |
DatetimeIndex(arg).astype(dtype) | |
else: | |
result = DatetimeIndex(arg).astype(dtype) | |
tm.assert_index_equal(result, index) | |
else: | |
result = klass(arg, dtype=dtype) | |
tm.assert_index_equal(result, index) | |
if attr == "asi8": | |
result = DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture) | |
tm.assert_index_equal(result, index) | |
elif klass is Index: | |
with pytest.raises(TypeError, match="unexpected keyword"): | |
klass(arg, tz=tz_naive_fixture) | |
else: | |
result = klass(list(arg), tz=tz_naive_fixture) | |
tm.assert_index_equal(result, index) | |
if attr == "asi8": | |
if err: | |
with pytest.raises(TypeError, match=msg): | |
DatetimeIndex(list(arg)).astype(dtype) | |
else: | |
result = DatetimeIndex(list(arg)).astype(dtype) | |
tm.assert_index_equal(result, index) | |
else: | |
result = klass(list(arg), dtype=dtype) | |
tm.assert_index_equal(result, index) | |
def test_constructor_dtypes_timedelta(self, attr, klass): | |
index = timedelta_range("1 days", periods=5) | |
index = index._with_freq(None) # won't be preserved by constructors | |
dtype = index.dtype | |
values = getattr(index, attr) | |
result = klass(values, dtype=dtype) | |
tm.assert_index_equal(result, index) | |
result = klass(list(values), dtype=dtype) | |
tm.assert_index_equal(result, index) | |
def test_constructor_empty(self, value, klass): | |
empty = klass(value) | |
assert isinstance(empty, klass) | |
assert not len(empty) | |
def test_constructor_empty_special(self, empty, klass): | |
assert isinstance(empty, klass) | |
assert not len(empty) | |
def test_view_with_args(self, index): | |
index.view("i8") | |
def test_view_with_args_object_array_raises(self, index): | |
if index.dtype == bool: | |
msg = "When changing to a larger dtype" | |
with pytest.raises(ValueError, match=msg): | |
index.view("i8") | |
elif index.dtype == "string": | |
with pytest.raises(NotImplementedError, match="i8"): | |
index.view("i8") | |
else: | |
msg = ( | |
"Cannot change data-type for array of references|" | |
"Cannot change data-type for object array|" | |
) | |
with pytest.raises(TypeError, match=msg): | |
index.view("i8") | |
def test_astype(self, index): | |
casted = index.astype("i8") | |
# it works! | |
casted.get_loc(5) | |
# pass on name | |
index.name = "foobar" | |
casted = index.astype("i8") | |
assert casted.name == "foobar" | |
def test_equals_object(self): | |
# same | |
assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"])) | |
def test_not_equals_object(self, comp): | |
assert not Index(["a", "b", "c"]).equals(comp) | |
def test_identical(self): | |
# index | |
i1 = Index(["a", "b", "c"]) | |
i2 = Index(["a", "b", "c"]) | |
assert i1.identical(i2) | |
i1 = i1.rename("foo") | |
assert i1.equals(i2) | |
assert not i1.identical(i2) | |
i2 = i2.rename("foo") | |
assert i1.identical(i2) | |
i3 = Index([("a", "a"), ("a", "b"), ("b", "a")]) | |
i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False) | |
assert not i3.identical(i4) | |
def test_is_(self): | |
ind = Index(range(10)) | |
assert ind.is_(ind) | |
assert ind.is_(ind.view().view().view().view()) | |
assert not ind.is_(Index(range(10))) | |
assert not ind.is_(ind.copy()) | |
assert not ind.is_(ind.copy(deep=False)) | |
assert not ind.is_(ind[:]) | |
assert not ind.is_(np.array(range(10))) | |
# quasi-implementation dependent | |
assert ind.is_(ind.view()) | |
ind2 = ind.view() | |
ind2.name = "bob" | |
assert ind.is_(ind2) | |
assert ind2.is_(ind) | |
# doesn't matter if Indices are *actually* views of underlying data, | |
assert not ind.is_(Index(ind.values)) | |
arr = np.array(range(1, 11)) | |
ind1 = Index(arr, copy=False) | |
ind2 = Index(arr, copy=False) | |
assert not ind1.is_(ind2) | |
def test_asof_numeric_vs_bool_raises(self): | |
left = Index([1, 2, 3]) | |
right = Index([True, False], dtype=object) | |
msg = "Cannot compare dtypes int64 and bool" | |
with pytest.raises(TypeError, match=msg): | |
left.asof(right[0]) | |
# TODO: should right.asof(left[0]) also raise? | |
with pytest.raises(InvalidIndexError, match=re.escape(str(right))): | |
left.asof(right) | |
with pytest.raises(InvalidIndexError, match=re.escape(str(left))): | |
right.asof(left) | |
def test_booleanindex(self, index): | |
bool_index = np.ones(len(index), dtype=bool) | |
bool_index[5:30:2] = False | |
sub_index = index[bool_index] | |
for i, val in enumerate(sub_index): | |
assert sub_index.get_loc(val) == i | |
sub_index = index[list(bool_index)] | |
for i, val in enumerate(sub_index): | |
assert sub_index.get_loc(val) == i | |
def test_fancy(self, simple_index): | |
index = simple_index | |
sl = index[[1, 2, 3]] | |
for i in sl: | |
assert i == sl[sl.get_loc(i)] | |
def test_empty_fancy(self, index, dtype, request, using_infer_string): | |
if dtype is np.bool_ and using_infer_string and index.dtype == "string": | |
request.applymarker(pytest.mark.xfail(reason="numpy behavior is buggy")) | |
empty_arr = np.array([], dtype=dtype) | |
empty_index = type(index)([], dtype=index.dtype) | |
assert index[[]].identical(empty_index) | |
if dtype == np.bool_: | |
with tm.assert_produces_warning(FutureWarning, match="is deprecated"): | |
assert index[empty_arr].identical(empty_index) | |
else: | |
assert index[empty_arr].identical(empty_index) | |
def test_empty_fancy_raises(self, index): | |
# DatetimeIndex is excluded, because it overrides getitem and should | |
# be tested separately. | |
empty_farr = np.array([], dtype=np.float64) | |
empty_index = type(index)([], dtype=index.dtype) | |
assert index[[]].identical(empty_index) | |
# np.ndarray only accepts ndarray of int & bool dtypes, so should Index | |
msg = r"arrays used as indices must be of integer" | |
with pytest.raises(IndexError, match=msg): | |
index[empty_farr] | |
def test_union_dt_as_obj(self, simple_index): | |
# TODO: Replace with fixturesult | |
index = simple_index | |
date_index = date_range("2019-01-01", periods=10) | |
first_cat = index.union(date_index) | |
second_cat = index.union(index) | |
appended = Index(np.append(index, date_index.astype("O"))) | |
tm.assert_index_equal(first_cat, appended) | |
tm.assert_index_equal(second_cat, index) | |
tm.assert_contains_all(index, first_cat) | |
tm.assert_contains_all(index, second_cat) | |
tm.assert_contains_all(date_index, first_cat) | |
def test_map_with_tuples(self): | |
# GH 12766 | |
# Test that returning a single tuple from an Index | |
# returns an Index. | |
index = Index(np.arange(3), dtype=np.int64) | |
result = index.map(lambda x: (x,)) | |
expected = Index([(i,) for i in index]) | |
tm.assert_index_equal(result, expected) | |
# Test that returning a tuple from a map of a single index | |
# returns a MultiIndex object. | |
result = index.map(lambda x: (x, x == 1)) | |
expected = MultiIndex.from_tuples([(i, i == 1) for i in index]) | |
tm.assert_index_equal(result, expected) | |
def test_map_with_tuples_mi(self): | |
# Test that returning a single object from a MultiIndex | |
# returns an Index. | |
first_level = ["foo", "bar", "baz"] | |
multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3])) | |
reduced_index = multi_index.map(lambda x: x[0]) | |
tm.assert_index_equal(reduced_index, Index(first_level)) | |
def test_map_tseries_indices_return_index(self, index): | |
expected = Index([1] * 10) | |
result = index.map(lambda x: 1) | |
tm.assert_index_equal(expected, result) | |
def test_map_tseries_indices_accsr_return_index(self): | |
date_index = DatetimeIndex( | |
date_range("2020-01-01", periods=24, freq="h"), name="hourly" | |
) | |
result = date_index.map(lambda x: x.hour) | |
expected = Index(np.arange(24, dtype="int64"), name="hourly") | |
tm.assert_index_equal(result, expected, exact=True) | |
def test_map_dictlike_simple(self, mapper): | |
# GH 12756 | |
expected = Index(["foo", "bar", "baz"]) | |
index = Index(np.arange(3), dtype=np.int64) | |
result = index.map(mapper(expected.values, index)) | |
tm.assert_index_equal(result, expected) | |
def test_map_dictlike(self, index, mapper, request): | |
# GH 12756 | |
if isinstance(index, CategoricalIndex): | |
pytest.skip("Tested in test_categorical") | |
elif not index.is_unique: | |
pytest.skip("Cannot map duplicated index") | |
rng = np.arange(len(index), 0, -1, dtype=np.int64) | |
if index.empty: | |
# to match proper result coercion for uints | |
expected = Index([]) | |
elif is_numeric_dtype(index.dtype): | |
expected = index._constructor(rng, dtype=index.dtype) | |
elif type(index) is Index and index.dtype != object: | |
# i.e. EA-backed, for now just Nullable | |
expected = Index(rng, dtype=index.dtype) | |
else: | |
expected = Index(rng) | |
result = index.map(mapper(expected, index)) | |
tm.assert_index_equal(result, expected) | |
def test_map_with_non_function_missing_values(self, mapper): | |
# GH 12756 | |
expected = Index([2.0, np.nan, "foo"]) | |
result = Index([2, 1, 0]).map(mapper) | |
tm.assert_index_equal(expected, result) | |
def test_map_na_exclusion(self): | |
index = Index([1.5, np.nan, 3, np.nan, 5]) | |
result = index.map(lambda x: x * 2, na_action="ignore") | |
expected = index * 2 | |
tm.assert_index_equal(result, expected) | |
def test_map_defaultdict(self): | |
index = Index([1, 2, 3]) | |
default_dict = defaultdict(lambda: "blank") | |
default_dict[1] = "stuff" | |
result = index.map(default_dict) | |
expected = Index(["stuff", "blank", "blank"]) | |
tm.assert_index_equal(result, expected) | |
def test_append_empty_preserve_name(self, name, expected): | |
left = Index([], name="foo") | |
right = Index([1, 2, 3], name=name) | |
msg = "The behavior of array concatenation with empty entries is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = left.append(right) | |
assert result.name == expected | |
def test_is_numeric(self, index, expected): | |
assert is_any_real_numeric_dtype(index) is expected | |
def test_is_object(self, index, expected, using_infer_string): | |
if using_infer_string and index.dtype == "string" and expected: | |
expected = False | |
assert is_object_dtype(index) is expected | |
def test_summary(self, index): | |
index._summary() | |
def test_format_bug(self): | |
# GH 14626 | |
# windows has different precision on datetime.datetime.now (it doesn't | |
# include us since the default for Timestamp shows these but Index | |
# formatting does not we are skipping) | |
now = datetime.now() | |
msg = r"Index\.format is deprecated" | |
if not str(now).endswith("000"): | |
index = Index([now]) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
formatted = index.format() | |
expected = [str(index[0])] | |
assert formatted == expected | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
Index([]).format() | |
def test_format_missing(self, vals, nulls_fixture): | |
# 2845 | |
vals = list(vals) # Copy for each iteration | |
vals.append(nulls_fixture) | |
index = Index(vals, dtype=object) | |
# TODO: case with complex dtype? | |
msg = r"Index\.format is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
formatted = index.format() | |
null_repr = "NaN" if isinstance(nulls_fixture, float) else str(nulls_fixture) | |
expected = [str(index[0]), str(index[1]), str(index[2]), null_repr] | |
assert formatted == expected | |
assert index[3] is nulls_fixture | |
def test_logical_compat(self, op, simple_index): | |
index = simple_index | |
left = getattr(index, op)() | |
assert left == getattr(index.values, op)() | |
right = getattr(index.to_series(), op)() | |
# left might not match right exactly in e.g. string cases where the | |
# because we use np.any/all instead of .any/all | |
assert bool(left) == bool(right) | |
def test_drop_by_str_label(self, index): | |
n = len(index) | |
drop = index[list(range(5, 10))] | |
dropped = index.drop(drop) | |
expected = index[list(range(5)) + list(range(10, n))] | |
tm.assert_index_equal(dropped, expected) | |
dropped = index.drop(index[0]) | |
expected = index[1:] | |
tm.assert_index_equal(dropped, expected) | |
def test_drop_by_str_label_raises_missing_keys(self, index, keys): | |
with pytest.raises(KeyError, match=""): | |
index.drop(keys) | |
def test_drop_by_str_label_errors_ignore(self, index): | |
n = len(index) | |
drop = index[list(range(5, 10))] | |
mixed = drop.tolist() + ["foo"] | |
dropped = index.drop(mixed, errors="ignore") | |
expected = index[list(range(5)) + list(range(10, n))] | |
tm.assert_index_equal(dropped, expected) | |
dropped = index.drop(["foo", "bar"], errors="ignore") | |
expected = index[list(range(n))] | |
tm.assert_index_equal(dropped, expected) | |
def test_drop_by_numeric_label_loc(self): | |
# TODO: Parametrize numeric and str tests after self.strIndex fixture | |
index = Index([1, 2, 3]) | |
dropped = index.drop(1) | |
expected = Index([2, 3]) | |
tm.assert_index_equal(dropped, expected) | |
def test_drop_by_numeric_label_raises_missing_keys(self): | |
index = Index([1, 2, 3]) | |
with pytest.raises(KeyError, match=""): | |
index.drop([3, 4]) | |
def test_drop_by_numeric_label_errors_ignore(self, key, expected): | |
index = Index([1, 2, 3]) | |
dropped = index.drop(key, errors="ignore") | |
tm.assert_index_equal(dropped, expected) | |
def test_drop_tuple(self, values, to_drop): | |
# GH 18304 | |
index = Index(values) | |
expected = Index(["b"], dtype=object) | |
result = index.drop(to_drop) | |
tm.assert_index_equal(result, expected) | |
removed = index.drop(to_drop[0]) | |
for drop_me in to_drop[1], [to_drop[1]]: | |
result = removed.drop(drop_me) | |
tm.assert_index_equal(result, expected) | |
removed = index.drop(to_drop[1]) | |
msg = rf"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\"" | |
for drop_me in to_drop[1], [to_drop[1]]: | |
with pytest.raises(KeyError, match=msg): | |
removed.drop(drop_me) | |
def test_drop_with_duplicates_in_index(self, index): | |
# GH38051 | |
if len(index) == 0 or isinstance(index, MultiIndex): | |
pytest.skip("Test doesn't make sense for empty MultiIndex") | |
if isinstance(index, IntervalIndex) and not IS64: | |
pytest.skip("Cannot test IntervalIndex with int64 dtype on 32 bit platform") | |
index = index.unique().repeat(2) | |
expected = index[2:] | |
result = index.drop(index[0]) | |
tm.assert_index_equal(result, expected) | |
def test_is_monotonic_incomparable(self, attr): | |
index = Index([5, datetime.now(), 7]) | |
assert not getattr(index, attr) | |
def test_isin(self, values, index, expected): | |
result = index.isin(values) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_isin_nan_common_object( | |
self, nulls_fixture, nulls_fixture2, using_infer_string | |
): | |
# Test cartesian product of null fixtures and ensure that we don't | |
# mangle the various types (save a corner case with PyPy) | |
idx = Index(["a", nulls_fixture]) | |
# all nans are the same | |
if ( | |
isinstance(nulls_fixture, float) | |
and isinstance(nulls_fixture2, float) | |
and math.isnan(nulls_fixture) | |
and math.isnan(nulls_fixture2) | |
): | |
tm.assert_numpy_array_equal( | |
idx.isin([nulls_fixture2]), | |
np.array([False, True]), | |
) | |
elif nulls_fixture is nulls_fixture2: # should preserve NA type | |
tm.assert_numpy_array_equal( | |
idx.isin([nulls_fixture2]), | |
np.array([False, True]), | |
) | |
elif using_infer_string and idx.dtype == "string": | |
tm.assert_numpy_array_equal( | |
idx.isin([nulls_fixture2]), | |
np.array([False, True]), | |
) | |
else: | |
tm.assert_numpy_array_equal( | |
idx.isin([nulls_fixture2]), | |
np.array([False, False]), | |
) | |
def test_isin_nan_common_float64(self, nulls_fixture, float_numpy_dtype): | |
dtype = float_numpy_dtype | |
if nulls_fixture is pd.NaT or nulls_fixture is pd.NA: | |
# Check 1) that we cannot construct a float64 Index with this value | |
# and 2) that with an NaN we do not have .isin(nulls_fixture) | |
msg = ( | |
r"float\(\) argument must be a string or a (real )?number, " | |
f"not {repr(type(nulls_fixture).__name__)}" | |
) | |
with pytest.raises(TypeError, match=msg): | |
Index([1.0, nulls_fixture], dtype=dtype) | |
idx = Index([1.0, np.nan], dtype=dtype) | |
assert not idx.isin([nulls_fixture]).any() | |
return | |
idx = Index([1.0, nulls_fixture], dtype=dtype) | |
res = idx.isin([np.nan]) | |
tm.assert_numpy_array_equal(res, np.array([False, True])) | |
# we cannot compare NaT with NaN | |
res = idx.isin([pd.NaT]) | |
tm.assert_numpy_array_equal(res, np.array([False, False])) | |
def test_isin_level_kwarg(self, level, index): | |
values = index.tolist()[-2:] + ["nonexisting"] | |
expected = np.array([False, False, True, True]) | |
tm.assert_numpy_array_equal(expected, index.isin(values, level=level)) | |
index.name = "foobar" | |
tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar")) | |
def test_isin_level_kwarg_bad_level_raises(self, index): | |
for level in [10, index.nlevels, -(index.nlevels + 1)]: | |
with pytest.raises(IndexError, match="Too many levels"): | |
index.isin([], level=level) | |
def test_isin_level_kwarg_bad_label_raises(self, label, index): | |
if isinstance(index, MultiIndex): | |
index = index.rename(["foo", "bar"] + index.names[2:]) | |
msg = f"'Level {label} not found'" | |
else: | |
index = index.rename("foo") | |
msg = rf"Requested level \({label}\) does not match index name \(foo\)" | |
with pytest.raises(KeyError, match=msg): | |
index.isin([], level=label) | |
def test_isin_empty(self, empty): | |
# see gh-16991 | |
index = Index(["a", "b"]) | |
expected = np.array([False, False]) | |
result = index.isin(empty) | |
tm.assert_numpy_array_equal(expected, result) | |
def test_isin_arrow_string_null(self): | |
# GH#55821 | |
index = Index(["a", "b"], dtype="string[pyarrow_numpy]") | |
result = index.isin([None]) | |
expected = np.array([False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_boolean_cmp(self, values): | |
index = Index(values) | |
result = index == values | |
expected = np.array([True, True, True, True], dtype=bool) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_get_level_values(self, index, name, level): | |
expected = index.copy() | |
if name: | |
expected.name = name | |
result = expected.get_level_values(level) | |
tm.assert_index_equal(result, expected) | |
def test_slice_keep_name(self): | |
index = Index(["a", "b"], name="asdf") | |
assert index.name == index[1:].name | |
def test_join_self(self, index, join_type): | |
result = index.join(index, how=join_type) | |
expected = index | |
if join_type == "outer": | |
expected = expected.sort_values() | |
tm.assert_index_equal(result, expected) | |
def test_str_attribute(self, method): | |
# GH9068 | |
index = Index([" jack", "jill ", " jesse ", "frank"]) | |
expected = Index([getattr(str, method)(x) for x in index.values]) | |
result = getattr(index.str, method)() | |
tm.assert_index_equal(result, expected) | |
def test_str_attribute_raises(self, index): | |
with pytest.raises(AttributeError, match="only use .str accessor"): | |
index.str.repeat(2) | |
def test_str_split(self, expand, expected): | |
index = Index(["a b c", "d e", "f"]) | |
if expand is not None: | |
result = index.str.split(expand=expand) | |
else: | |
result = index.str.split() | |
tm.assert_index_equal(result, expected) | |
def test_str_bool_return(self): | |
# test boolean case, should return np.array instead of boolean Index | |
index = Index(["a1", "a2", "b1", "b2"]) | |
result = index.str.startswith("a") | |
expected = np.array([True, True, False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
assert isinstance(result, np.ndarray) | |
def test_str_bool_series_indexing(self): | |
index = Index(["a1", "a2", "b1", "b2"]) | |
s = Series(range(4), index=index) | |
result = s[s.index.str.startswith("a")] | |
expected = Series(range(2), index=["a1", "a2"]) | |
tm.assert_series_equal(result, expected) | |
def test_tab_completion(self, index, expected): | |
# GH 9910 | |
result = "str" in dir(index) | |
assert result == expected | |
def test_indexing_doesnt_change_class(self): | |
index = Index([1, 2, 3, "a", "b", "c"]) | |
assert index[1:3].identical(Index([2, 3], dtype=np.object_)) | |
assert index[[0, 1]].identical(Index([1, 2], dtype=np.object_)) | |
def test_outer_join_sort(self): | |
left_index = Index(np.random.default_rng(2).permutation(15)) | |
right_index = date_range("2020-01-01", periods=10) | |
with tm.assert_produces_warning(RuntimeWarning): | |
result = left_index.join(right_index, how="outer") | |
with tm.assert_produces_warning(RuntimeWarning): | |
expected = left_index.astype(object).union(right_index.astype(object)) | |
tm.assert_index_equal(result, expected) | |
def test_take_fill_value(self): | |
# GH 12631 | |
index = Index(list("ABC"), name="xxx") | |
result = index.take(np.array([1, 0, -1])) | |
expected = Index(list("BAC"), name="xxx") | |
tm.assert_index_equal(result, expected) | |
# fill_value | |
result = index.take(np.array([1, 0, -1]), fill_value=True) | |
expected = Index(["B", "A", np.nan], name="xxx") | |
tm.assert_index_equal(result, expected) | |
# allow_fill=False | |
result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) | |
expected = Index(["B", "A", "C"], name="xxx") | |
tm.assert_index_equal(result, expected) | |
def test_take_fill_value_none_raises(self): | |
index = Index(list("ABC"), name="xxx") | |
msg = ( | |
"When allow_fill=True and fill_value is not None, " | |
"all indices must be >= -1" | |
) | |
with pytest.raises(ValueError, match=msg): | |
index.take(np.array([1, 0, -2]), fill_value=True) | |
with pytest.raises(ValueError, match=msg): | |
index.take(np.array([1, 0, -5]), fill_value=True) | |
def test_take_bad_bounds_raises(self): | |
index = Index(list("ABC"), name="xxx") | |
with pytest.raises(IndexError, match="out of bounds"): | |
index.take(np.array([1, -5])) | |
def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels): | |
# GH6552 | |
index = Index([0, 1, 2]) | |
index.name = name | |
assert index.reindex(labels)[0].name == name | |
def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels): | |
# GH7774 | |
index = Index(list("abc")) | |
assert index.reindex(labels)[0].dtype.type == index.dtype.type | |
def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype): | |
# GH7774 | |
index = Index(list("abc")) | |
assert index.reindex(labels)[0].dtype.type == dtype | |
def test_reindex_doesnt_preserve_type_if_target_is_empty_index_numeric( | |
self, any_real_numpy_dtype | |
): | |
# GH7774 | |
dtype = any_real_numpy_dtype | |
index = Index(list("abc")) | |
labels = Index([], dtype=dtype) | |
assert index.reindex(labels)[0].dtype == dtype | |
def test_reindex_no_type_preserve_target_empty_mi(self): | |
index = Index(list("abc")) | |
result = index.reindex( | |
MultiIndex([Index([], np.int64), Index([], np.float64)], [[], []]) | |
)[0] | |
assert result.levels[0].dtype.type == np.int64 | |
assert result.levels[1].dtype.type == np.float64 | |
def test_reindex_ignoring_level(self): | |
# GH#35132 | |
idx = Index([1, 2, 3], name="x") | |
idx2 = Index([1, 2, 3, 4], name="x") | |
expected = Index([1, 2, 3, 4], name="x") | |
result, _ = idx.reindex(idx2, level="x") | |
tm.assert_index_equal(result, expected) | |
def test_groupby(self): | |
index = Index(range(5)) | |
result = index.groupby(np.array([1, 1, 2, 2, 2])) | |
expected = {1: Index([0, 1]), 2: Index([2, 3, 4])} | |
tm.assert_dict_equal(result, expected) | |
def test_equals_op_multiindex(self, mi, expected): | |
# GH9785 | |
# test comparisons of multiindex | |
df = DataFrame( | |
[3, 6], | |
columns=["c"], | |
index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]), | |
) | |
result = df.index == mi | |
tm.assert_numpy_array_equal(result, expected) | |
def test_equals_op_multiindex_identify(self): | |
df = DataFrame( | |
[3, 6], | |
columns=["c"], | |
index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]), | |
) | |
result = df.index == df.index | |
expected = np.array([True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_equals_op_mismatched_multiindex_raises(self, index): | |
df = DataFrame( | |
[3, 6], | |
columns=["c"], | |
index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]), | |
) | |
with pytest.raises(ValueError, match="Lengths must match"): | |
df.index == index | |
def test_equals_op_index_vs_mi_same_length(self, using_infer_string): | |
mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]) | |
index = Index(["foo", "bar", "baz"]) | |
result = mi == index | |
expected = np.array([False, False, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_dt_conversion_preserves_name(self, dt_conv, arg): | |
# GH 10875 | |
index = Index(arg, name="label") | |
assert index.name == dt_conv(index).name | |
def test_cached_properties_not_settable(self): | |
index = Index([1, 2, 3]) | |
with pytest.raises(AttributeError, match="Can't set attribute"): | |
index.is_unique = False | |
def test_tab_complete_warning(self, ip): | |
# https://github.com/pandas-dev/pandas/issues/16409 | |
pytest.importorskip("IPython", minversion="6.0.0") | |
from IPython.core.completer import provisionalcompleter | |
code = "import pandas as pd; idx = pd.Index([1, 2])" | |
ip.run_cell(code) | |
# GH 31324 newer jedi version raises Deprecation warning; | |
# appears resolved 2021-02-02 | |
with tm.assert_produces_warning(None, raise_on_extra_warnings=False): | |
with provisionalcompleter("ignore"): | |
list(ip.Completer.completions("idx.", 4)) | |
def test_contains_method_removed(self, index): | |
# GH#30103 method removed for all types except IntervalIndex | |
if isinstance(index, IntervalIndex): | |
index.contains(1) | |
else: | |
msg = f"'{type(index).__name__}' object has no attribute 'contains'" | |
with pytest.raises(AttributeError, match=msg): | |
index.contains(1) | |
def test_sortlevel(self): | |
index = Index([5, 4, 3, 2, 1]) | |
with pytest.raises(Exception, match="ascending must be a single bool value or"): | |
index.sortlevel(ascending="True") | |
with pytest.raises( | |
Exception, match="ascending must be a list of bool values of length 1" | |
): | |
index.sortlevel(ascending=[True, True]) | |
with pytest.raises(Exception, match="ascending must be a bool value"): | |
index.sortlevel(ascending=["True"]) | |
expected = Index([1, 2, 3, 4, 5]) | |
result = index.sortlevel(ascending=[True]) | |
tm.assert_index_equal(result[0], expected) | |
expected = Index([1, 2, 3, 4, 5]) | |
result = index.sortlevel(ascending=True) | |
tm.assert_index_equal(result[0], expected) | |
expected = Index([5, 4, 3, 2, 1]) | |
result = index.sortlevel(ascending=False) | |
tm.assert_index_equal(result[0], expected) | |
def test_sortlevel_na_position(self): | |
# GH#51612 | |
idx = Index([1, np.nan]) | |
result = idx.sortlevel(na_position="first")[0] | |
expected = Index([np.nan, 1]) | |
tm.assert_index_equal(result, expected) | |
def test_index_diff(self, periods, expected_results): | |
# GH#19708 | |
idx = Index([10, 20, 30, 40, 50]) | |
result = idx.diff(periods) | |
expected = Index(expected_results) | |
tm.assert_index_equal(result, expected) | |
def test_index_round(self, decimals, expected_results): | |
# GH#19708 | |
idx = Index([1.234, 2.345, 3.456]) | |
result = idx.round(decimals) | |
expected = Index(expected_results) | |
tm.assert_index_equal(result, expected) | |
class TestMixedIntIndex: | |
# Mostly the tests from common.py for which the results differ | |
# in py2 and py3 because ints and strings are uncomparable in py3 | |
# (GH 13514) | |
def simple_index(self) -> Index: | |
return Index([0, "a", 1, "b", 2, "c"]) | |
def test_argsort(self, simple_index): | |
index = simple_index | |
with pytest.raises(TypeError, match="'>|<' not supported"): | |
index.argsort() | |
def test_numpy_argsort(self, simple_index): | |
index = simple_index | |
with pytest.raises(TypeError, match="'>|<' not supported"): | |
np.argsort(index) | |
def test_copy_name(self, simple_index): | |
# Check that "name" argument passed at initialization is honoured | |
# GH12309 | |
index = simple_index | |
first = type(index)(index, copy=True, name="mario") | |
second = type(first)(first, copy=False) | |
# Even though "copy=False", we want a new object. | |
assert first is not second | |
tm.assert_index_equal(first, second) | |
assert first.name == "mario" | |
assert second.name == "mario" | |
s1 = Series(2, index=first) | |
s2 = Series(3, index=second[:-1]) | |
s3 = s1 * s2 | |
assert s3.index.name == "mario" | |
def test_copy_name2(self): | |
# Check that adding a "name" parameter to the copy is honored | |
# GH14302 | |
index = Index([1, 2], name="MyName") | |
index1 = index.copy() | |
tm.assert_index_equal(index, index1) | |
index2 = index.copy(name="NewName") | |
tm.assert_index_equal(index, index2, check_names=False) | |
assert index.name == "MyName" | |
assert index2.name == "NewName" | |
def test_unique_na(self): | |
idx = Index([2, np.nan, 2, 1], name="my_index") | |
expected = Index([2, np.nan, 1], name="my_index") | |
result = idx.unique() | |
tm.assert_index_equal(result, expected) | |
def test_logical_compat(self, simple_index): | |
index = simple_index | |
assert index.all() == index.values.all() | |
assert index.any() == index.values.any() | |
def test_dropna(self, how, dtype, vals, expected): | |
# GH 6194 | |
index = Index(vals, dtype=dtype) | |
result = index.dropna(how=how) | |
expected = Index(expected, dtype=dtype) | |
tm.assert_index_equal(result, expected) | |
def test_dropna_dt_like(self, how, index, expected): | |
result = index.dropna(how=how) | |
tm.assert_index_equal(result, expected) | |
def test_dropna_invalid_how_raises(self): | |
msg = "invalid how option: xxx" | |
with pytest.raises(ValueError, match=msg): | |
Index([1, 2, 3]).dropna(how="xxx") | |
def test_is_monotonic_na(self, index): | |
assert index.is_monotonic_increasing is False | |
assert index.is_monotonic_decreasing is False | |
assert index._is_strictly_monotonic_increasing is False | |
assert index._is_strictly_monotonic_decreasing is False | |
def test_is_monotonic_unique_na(self, dtype, unique_first): | |
# GH 55755 | |
index = Index([None, 1, 1], dtype=dtype) | |
if unique_first: | |
assert index.is_unique is False | |
assert index.is_monotonic_increasing is False | |
assert index.is_monotonic_decreasing is False | |
else: | |
assert index.is_monotonic_increasing is False | |
assert index.is_monotonic_decreasing is False | |
assert index.is_unique is False | |
def test_int_name_format(self, frame_or_series): | |
index = Index(["a", "b", "c"], name=0) | |
result = frame_or_series(list(range(3)), index=index) | |
assert "0" in repr(result) | |
def test_str_to_bytes_raises(self): | |
# GH 26447 | |
index = Index([str(x) for x in range(10)]) | |
msg = "^'str' object cannot be interpreted as an integer$" | |
with pytest.raises(TypeError, match=msg): | |
bytes(index) | |
def test_index_with_tuple_bool(self): | |
# GH34123 | |
# TODO: also this op right now produces FutureWarning from numpy | |
# https://github.com/numpy/numpy/issues/11521 | |
idx = Index([("a", "b"), ("b", "c"), ("c", "a")]) | |
result = idx == ("c", "a") | |
expected = np.array([False, False, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestIndexUtils: | |
def test_ensure_index_from_sequences(self, data, names, expected): | |
result = ensure_index_from_sequences(data, names) | |
tm.assert_index_equal(result, expected) | |
def test_ensure_index_mixed_closed_intervals(self): | |
# GH27172 | |
intervals = [ | |
pd.Interval(0, 1, closed="left"), | |
pd.Interval(1, 2, closed="right"), | |
pd.Interval(2, 3, closed="neither"), | |
pd.Interval(3, 4, closed="both"), | |
] | |
result = ensure_index(intervals) | |
expected = Index(intervals, dtype=object) | |
tm.assert_index_equal(result, expected) | |
def test_ensure_index_uint64(self): | |
# with both 0 and a large-uint64, np.array will infer to float64 | |
# https://github.com/numpy/numpy/issues/19146 | |
# but a more accurate choice would be uint64 | |
values = [0, np.iinfo(np.uint64).max] | |
result = ensure_index(values) | |
assert list(result) == values | |
expected = Index(values, dtype="uint64") | |
tm.assert_index_equal(result, expected) | |
def test_get_combined_index(self): | |
result = _get_combined_index([]) | |
expected = Index([]) | |
tm.assert_index_equal(result, expected) | |
def test_generated_op_names(opname, index): | |
opname = f"__{opname}__" | |
method = getattr(index, opname) | |
assert method.__name__ == opname | |
def test_index_subclass_constructor_wrong_kwargs(klass): | |
# GH #19348 | |
with pytest.raises(TypeError, match="unexpected keyword argument"): | |
klass(foo="bar") | |
def test_deprecated_fastpath(): | |
msg = "[Uu]nexpected keyword argument" | |
with pytest.raises(TypeError, match=msg): | |
Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True) | |
with pytest.raises(TypeError, match=msg): | |
Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True) | |
with pytest.raises(TypeError, match=msg): | |
RangeIndex(0, 5, 2, name="test", fastpath=True) | |
with pytest.raises(TypeError, match=msg): | |
CategoricalIndex(["a", "b", "c"], name="test", fastpath=True) | |
def test_shape_of_invalid_index(): | |
# Pre-2.0, it was possible to create "invalid" index objects backed by | |
# a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125 | |
# about this). However, as long as this is not solved in general,this test ensures | |
# that the returned shape is consistent with this underlying array for | |
# compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775) | |
idx = Index([0, 1, 2, 3]) | |
with pytest.raises(ValueError, match="Multi-dimensional indexing"): | |
# GH#30588 multi-dimensional indexing deprecated | |
idx[:, None] | |
def test_validate_1d_input(dtype): | |
# GH#27125 check that we do not have >1-dimensional input | |
msg = "Index data must be 1-dimensional" | |
arr = np.arange(8).reshape(2, 2, 2) | |
with pytest.raises(ValueError, match=msg): | |
Index(arr, dtype=dtype) | |
df = DataFrame(arr.reshape(4, 2)) | |
with pytest.raises(ValueError, match=msg): | |
Index(df, dtype=dtype) | |
# GH#13601 trying to assign a multi-dimensional array to an index is not allowed | |
ser = Series(0, range(4)) | |
with pytest.raises(ValueError, match=msg): | |
ser.index = np.array([[2, 3]] * 4, dtype=dtype) | |
def test_construct_from_memoryview(klass, extra_kwargs): | |
# GH 13120 | |
result = klass(memoryview(np.arange(2000, 2005)), **extra_kwargs) | |
expected = klass(list(range(2000, 2005)), **extra_kwargs) | |
tm.assert_index_equal(result, expected, exact=True) | |
def test_nan_comparison_same_object(op): | |
# GH#47105 | |
idx = Index([np.nan]) | |
expected = np.array([False]) | |
result = op(idx, idx) | |
tm.assert_numpy_array_equal(result, expected) | |
result = op(idx, idx.copy()) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_is_monotonic_pyarrow_list_type(): | |
# GH 57333 | |
import pyarrow as pa | |
idx = Index([[1], [2, 3]], dtype=pd.ArrowDtype(pa.list_(pa.int64()))) | |
assert not idx.is_monotonic_increasing | |
assert not idx.is_monotonic_decreasing | |