peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexes
/test_common.py
""" | |
Collection of tests asserting things that should be true for | |
any index subclass except for MultiIndex. Makes use of the `index_flat` | |
fixture defined in pandas/conftest.py. | |
""" | |
from copy import ( | |
copy, | |
deepcopy, | |
) | |
import re | |
import numpy as np | |
import pytest | |
from pandas.compat import IS64 | |
from pandas.compat.numpy import np_version_gte1p25 | |
from pandas.core.dtypes.common import ( | |
is_integer_dtype, | |
is_numeric_dtype, | |
) | |
import pandas as pd | |
from pandas import ( | |
CategoricalIndex, | |
MultiIndex, | |
PeriodIndex, | |
RangeIndex, | |
) | |
import pandas._testing as tm | |
class TestCommon: | |
def test_to_frame(self, name, index_flat, using_copy_on_write): | |
# see GH#15230, GH#22580 | |
idx = index_flat | |
if name: | |
idx_name = name | |
else: | |
idx_name = idx.name or 0 | |
df = idx.to_frame(name=idx_name) | |
assert df.index is idx | |
assert len(df.columns) == 1 | |
assert df.columns[0] == idx_name | |
if not using_copy_on_write: | |
assert df[idx_name].values is not idx.values | |
df = idx.to_frame(index=False, name=idx_name) | |
assert df.index is not idx | |
def test_droplevel(self, index_flat): | |
# GH 21115 | |
# MultiIndex is tested separately in test_multi.py | |
index = index_flat | |
assert index.droplevel([]).equals(index) | |
for level in [index.name, [index.name]]: | |
if isinstance(index.name, tuple) and level is index.name: | |
# GH 21121 : droplevel with tuple name | |
continue | |
msg = ( | |
"Cannot remove 1 levels from an index with 1 levels: at least one " | |
"level must be left." | |
) | |
with pytest.raises(ValueError, match=msg): | |
index.droplevel(level) | |
for level in "wrong", ["wrong"]: | |
with pytest.raises( | |
KeyError, | |
match=r"'Requested level \(wrong\) does not match index name \(None\)'", | |
): | |
index.droplevel(level) | |
def test_constructor_non_hashable_name(self, index_flat): | |
# GH 20527 | |
index = index_flat | |
message = "Index.name must be a hashable type" | |
renamed = [["1"]] | |
# With .rename() | |
with pytest.raises(TypeError, match=message): | |
index.rename(name=renamed) | |
# With .set_names() | |
with pytest.raises(TypeError, match=message): | |
index.set_names(names=renamed) | |
def test_constructor_unwraps_index(self, index_flat): | |
a = index_flat | |
# Passing dtype is necessary for Index([True, False], dtype=object) | |
# case. | |
b = type(a)(a, dtype=a.dtype) | |
tm.assert_equal(a._data, b._data) | |
def test_to_flat_index(self, index_flat): | |
# 22866 | |
index = index_flat | |
result = index.to_flat_index() | |
tm.assert_index_equal(result, index) | |
def test_set_name_methods(self, index_flat): | |
# MultiIndex tested separately | |
index = index_flat | |
new_name = "This is the new name for this index" | |
original_name = index.name | |
new_ind = index.set_names([new_name]) | |
assert new_ind.name == new_name | |
assert index.name == original_name | |
res = index.rename(new_name, inplace=True) | |
# should return None | |
assert res is None | |
assert index.name == new_name | |
assert index.names == [new_name] | |
with pytest.raises(ValueError, match="Level must be None"): | |
index.set_names("a", level=0) | |
# rename in place just leaves tuples and other containers alone | |
name = ("A", "B") | |
index.rename(name, inplace=True) | |
assert index.name == name | |
assert index.names == [name] | |
def test_set_names_single_label_no_level(self, index_flat): | |
with pytest.raises(TypeError, match="list-like"): | |
# should still fail even if it would be the right length | |
index_flat.set_names("a") | |
def test_copy_and_deepcopy(self, index_flat): | |
index = index_flat | |
for func in (copy, deepcopy): | |
idx_copy = func(index) | |
assert idx_copy is not index | |
assert idx_copy.equals(index) | |
new_copy = index.copy(deep=True, name="banana") | |
assert new_copy.name == "banana" | |
def test_copy_name(self, index_flat): | |
# GH#12309: Check that the "name" argument | |
# passed at initialization is honored. | |
index = index_flat | |
first = type(index)(index, copy=True, name="mario") | |
second = type(first)(first, copy=False) | |
# Even though "copy=False", we want a new object. | |
assert first is not second | |
tm.assert_index_equal(first, second) | |
# Not using tm.assert_index_equal() since names differ. | |
assert index.equals(first) | |
assert first.name == "mario" | |
assert second.name == "mario" | |
# TODO: belongs in series arithmetic tests? | |
s1 = pd.Series(2, index=first) | |
s2 = pd.Series(3, index=second[:-1]) | |
# See GH#13365 | |
s3 = s1 * s2 | |
assert s3.index.name == "mario" | |
def test_copy_name2(self, index_flat): | |
# GH#35592 | |
index = index_flat | |
assert index.copy(name="mario").name == "mario" | |
with pytest.raises(ValueError, match="Length of new names must be 1, got 2"): | |
index.copy(name=["mario", "luigi"]) | |
msg = f"{type(index).__name__}.name must be a hashable type" | |
with pytest.raises(TypeError, match=msg): | |
index.copy(name=[["mario"]]) | |
def test_unique_level(self, index_flat): | |
# don't test a MultiIndex here (as its tested separated) | |
index = index_flat | |
# GH 17896 | |
expected = index.drop_duplicates() | |
for level in [0, index.name, None]: | |
result = index.unique(level=level) | |
tm.assert_index_equal(result, expected) | |
msg = "Too many levels: Index has only 1 level, not 4" | |
with pytest.raises(IndexError, match=msg): | |
index.unique(level=3) | |
msg = ( | |
rf"Requested level \(wrong\) does not match index name " | |
rf"\({re.escape(index.name.__repr__())}\)" | |
) | |
with pytest.raises(KeyError, match=msg): | |
index.unique(level="wrong") | |
def test_unique(self, index_flat): | |
# MultiIndex tested separately | |
index = index_flat | |
if not len(index): | |
pytest.skip("Skip check for empty Index and MultiIndex") | |
idx = index[[0] * 5] | |
idx_unique = index[[0]] | |
# We test against `idx_unique`, so first we make sure it's unique | |
# and doesn't contain nans. | |
assert idx_unique.is_unique is True | |
try: | |
assert idx_unique.hasnans is False | |
except NotImplementedError: | |
pass | |
result = idx.unique() | |
tm.assert_index_equal(result, idx_unique) | |
# nans: | |
if not index._can_hold_na: | |
pytest.skip("Skip na-check if index cannot hold na") | |
vals = index._values[[0] * 5] | |
vals[0] = np.nan | |
vals_unique = vals[:2] | |
idx_nan = index._shallow_copy(vals) | |
idx_unique_nan = index._shallow_copy(vals_unique) | |
assert idx_unique_nan.is_unique is True | |
assert idx_nan.dtype == index.dtype | |
assert idx_unique_nan.dtype == index.dtype | |
expected = idx_unique_nan | |
for pos, i in enumerate([idx_nan, idx_unique_nan]): | |
result = i.unique() | |
tm.assert_index_equal(result, expected) | |
def test_searchsorted_monotonic(self, index_flat, request): | |
# GH17271 | |
index = index_flat | |
# not implemented for tuple searches in MultiIndex | |
# or Intervals searches in IntervalIndex | |
if isinstance(index, pd.IntervalIndex): | |
mark = pytest.mark.xfail( | |
reason="IntervalIndex.searchsorted does not support Interval arg", | |
raises=NotImplementedError, | |
) | |
request.applymarker(mark) | |
# nothing to test if the index is empty | |
if index.empty: | |
pytest.skip("Skip check for empty Index") | |
value = index[0] | |
# determine the expected results (handle dupes for 'right') | |
expected_left, expected_right = 0, (index == value).argmin() | |
if expected_right == 0: | |
# all values are the same, expected_right should be length | |
expected_right = len(index) | |
# test _searchsorted_monotonic in all cases | |
# test searchsorted only for increasing | |
if index.is_monotonic_increasing: | |
ssm_left = index._searchsorted_monotonic(value, side="left") | |
assert expected_left == ssm_left | |
ssm_right = index._searchsorted_monotonic(value, side="right") | |
assert expected_right == ssm_right | |
ss_left = index.searchsorted(value, side="left") | |
assert expected_left == ss_left | |
ss_right = index.searchsorted(value, side="right") | |
assert expected_right == ss_right | |
elif index.is_monotonic_decreasing: | |
ssm_left = index._searchsorted_monotonic(value, side="left") | |
assert expected_left == ssm_left | |
ssm_right = index._searchsorted_monotonic(value, side="right") | |
assert expected_right == ssm_right | |
else: | |
# non-monotonic should raise. | |
msg = "index must be monotonic increasing or decreasing" | |
with pytest.raises(ValueError, match=msg): | |
index._searchsorted_monotonic(value, side="left") | |
def test_drop_duplicates(self, index_flat, keep): | |
# MultiIndex is tested separately | |
index = index_flat | |
if isinstance(index, RangeIndex): | |
pytest.skip( | |
"RangeIndex is tested in test_drop_duplicates_no_duplicates " | |
"as it cannot hold duplicates" | |
) | |
if len(index) == 0: | |
pytest.skip( | |
"empty index is tested in test_drop_duplicates_no_duplicates " | |
"as it cannot hold duplicates" | |
) | |
# make unique index | |
holder = type(index) | |
unique_values = list(set(index)) | |
dtype = index.dtype if is_numeric_dtype(index) else None | |
unique_idx = holder(unique_values, dtype=dtype) | |
# make duplicated index | |
n = len(unique_idx) | |
duplicated_selection = np.random.default_rng(2).choice(n, int(n * 1.5)) | |
idx = holder(unique_idx.values[duplicated_selection]) | |
# Series.duplicated is tested separately | |
expected_duplicated = ( | |
pd.Series(duplicated_selection).duplicated(keep=keep).values | |
) | |
tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected_duplicated) | |
# Series.drop_duplicates is tested separately | |
expected_dropped = holder(pd.Series(idx).drop_duplicates(keep=keep)) | |
tm.assert_index_equal(idx.drop_duplicates(keep=keep), expected_dropped) | |
def test_drop_duplicates_no_duplicates(self, index_flat): | |
# MultiIndex is tested separately | |
index = index_flat | |
# make unique index | |
if isinstance(index, RangeIndex): | |
# RangeIndex cannot have duplicates | |
unique_idx = index | |
else: | |
holder = type(index) | |
unique_values = list(set(index)) | |
dtype = index.dtype if is_numeric_dtype(index) else None | |
unique_idx = holder(unique_values, dtype=dtype) | |
# check on unique index | |
expected_duplicated = np.array([False] * len(unique_idx), dtype="bool") | |
tm.assert_numpy_array_equal(unique_idx.duplicated(), expected_duplicated) | |
result_dropped = unique_idx.drop_duplicates() | |
tm.assert_index_equal(result_dropped, unique_idx) | |
# validate shallow copy | |
assert result_dropped is not unique_idx | |
def test_drop_duplicates_inplace(self, index): | |
msg = r"drop_duplicates\(\) got an unexpected keyword argument" | |
with pytest.raises(TypeError, match=msg): | |
index.drop_duplicates(inplace=True) | |
def test_has_duplicates(self, index_flat): | |
# MultiIndex tested separately in: | |
# tests/indexes/multi/test_unique_and_duplicates. | |
index = index_flat | |
holder = type(index) | |
if not len(index) or isinstance(index, RangeIndex): | |
# MultiIndex tested separately in: | |
# tests/indexes/multi/test_unique_and_duplicates. | |
# RangeIndex is unique by definition. | |
pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex") | |
idx = holder([index[0]] * 5) | |
assert idx.is_unique is False | |
assert idx.has_duplicates is True | |
def test_astype_preserves_name(self, index, dtype): | |
# https://github.com/pandas-dev/pandas/issues/32013 | |
if isinstance(index, MultiIndex): | |
index.names = ["idx" + str(i) for i in range(index.nlevels)] | |
else: | |
index.name = "idx" | |
warn = None | |
if index.dtype.kind == "c" and dtype in ["float64", "int64", "uint64"]: | |
# imaginary components discarded | |
if np_version_gte1p25: | |
warn = np.exceptions.ComplexWarning | |
else: | |
warn = np.ComplexWarning | |
is_pyarrow_str = str(index.dtype) == "string[pyarrow]" and dtype == "category" | |
try: | |
# Some of these conversions cannot succeed so we use a try / except | |
with tm.assert_produces_warning( | |
warn, | |
raise_on_extra_warnings=is_pyarrow_str, | |
check_stacklevel=False, | |
): | |
result = index.astype(dtype) | |
except (ValueError, TypeError, NotImplementedError, SystemError): | |
return | |
if isinstance(index, MultiIndex): | |
assert result.names == index.names | |
else: | |
assert result.name == index.name | |
def test_hasnans_isnans(self, index_flat): | |
# GH#11343, added tests for hasnans / isnans | |
index = index_flat | |
# cases in indices doesn't include NaN | |
idx = index.copy(deep=True) | |
expected = np.array([False] * len(idx), dtype=bool) | |
tm.assert_numpy_array_equal(idx._isnan, expected) | |
assert idx.hasnans is False | |
idx = index.copy(deep=True) | |
values = idx._values | |
if len(index) == 0: | |
return | |
elif is_integer_dtype(index.dtype): | |
return | |
elif index.dtype == bool: | |
# values[1] = np.nan below casts to True! | |
return | |
values[1] = np.nan | |
idx = type(index)(values) | |
expected = np.array([False] * len(idx), dtype=bool) | |
expected[1] = True | |
tm.assert_numpy_array_equal(idx._isnan, expected) | |
assert idx.hasnans is True | |
def test_sort_values_invalid_na_position(index_with_missing, na_position): | |
with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"): | |
index_with_missing.sort_values(na_position=na_position) | |
def test_sort_values_with_missing(index_with_missing, na_position, request): | |
# GH 35584. Test that sort_values works with missing values, | |
# sort non-missing and place missing according to na_position | |
if isinstance(index_with_missing, CategoricalIndex): | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="missing value sorting order not well-defined", strict=False | |
) | |
) | |
missing_count = np.sum(index_with_missing.isna()) | |
not_na_vals = index_with_missing[index_with_missing.notna()].values | |
sorted_values = np.sort(not_na_vals) | |
if na_position == "first": | |
sorted_values = np.concatenate([[None] * missing_count, sorted_values]) | |
else: | |
sorted_values = np.concatenate([sorted_values, [None] * missing_count]) | |
# Explicitly pass dtype needed for Index backed by EA e.g. IntegerArray | |
expected = type(index_with_missing)(sorted_values, dtype=index_with_missing.dtype) | |
result = index_with_missing.sort_values(na_position=na_position) | |
tm.assert_index_equal(result, expected) | |
def test_ndarray_compat_properties(index): | |
if isinstance(index, PeriodIndex) and not IS64: | |
pytest.skip("Overflow") | |
idx = index | |
assert idx.T.equals(idx) | |
assert idx.transpose().equals(idx) | |
values = idx.values | |
assert idx.shape == values.shape | |
assert idx.ndim == values.ndim | |
assert idx.size == values.size | |
if not isinstance(index, (RangeIndex, MultiIndex)): | |
# These two are not backed by an ndarray | |
assert idx.nbytes == values.nbytes | |
# test for validity | |
idx.nbytes | |
idx.values.nbytes | |
def test_compare_read_only_array(): | |
# GH#57130 | |
arr = np.array([], dtype=object) | |
arr.flags.writeable = False | |
idx = pd.Index(arr) | |
result = idx > 69 | |
assert result.dtype == bool | |