peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexes
/test_engines.py
import re | |
import numpy as np | |
import pytest | |
from pandas._libs import index as libindex | |
import pandas as pd | |
def numeric_indexing_engine_type_and_dtype(request): | |
return request.param | |
class TestDatetimeEngine: | |
def test_not_contains_requires_timestamp(self, scalar): | |
dti1 = pd.date_range("2016-01-01", periods=3) | |
dti2 = dti1.insert(1, pd.NaT) # non-monotonic | |
dti3 = dti1.insert(3, dti1[0]) # non-unique | |
dti4 = pd.date_range("2016-01-01", freq="ns", periods=2_000_000) | |
dti5 = dti4.insert(0, dti4[0]) # over size threshold, not unique | |
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))]) | |
for dti in [dti1, dti2, dti3, dti4, dti5]: | |
with pytest.raises(TypeError, match=msg): | |
scalar in dti._engine | |
with pytest.raises(KeyError, match=msg): | |
dti._engine.get_loc(scalar) | |
class TestTimedeltaEngine: | |
def test_not_contains_requires_timedelta(self, scalar): | |
tdi1 = pd.timedelta_range("42 days", freq="9h", periods=1234) | |
tdi2 = tdi1.insert(1, pd.NaT) # non-monotonic | |
tdi3 = tdi1.insert(3, tdi1[0]) # non-unique | |
tdi4 = pd.timedelta_range("42 days", freq="ns", periods=2_000_000) | |
tdi5 = tdi4.insert(0, tdi4[0]) # over size threshold, not unique | |
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))]) | |
for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]: | |
with pytest.raises(TypeError, match=msg): | |
scalar in tdi._engine | |
with pytest.raises(KeyError, match=msg): | |
tdi._engine.get_loc(scalar) | |
class TestNumericEngine: | |
def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype): | |
engine_type, dtype = numeric_indexing_engine_type_and_dtype | |
num = 1000 | |
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) | |
# monotonic increasing | |
engine = engine_type(arr) | |
assert engine.is_monotonic_increasing is True | |
assert engine.is_monotonic_decreasing is False | |
# monotonic decreasing | |
engine = engine_type(arr[::-1]) | |
assert engine.is_monotonic_increasing is False | |
assert engine.is_monotonic_decreasing is True | |
# neither monotonic increasing or decreasing | |
arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype) | |
engine = engine_type(arr[::-1]) | |
assert engine.is_monotonic_increasing is False | |
assert engine.is_monotonic_decreasing is False | |
def test_is_unique(self, numeric_indexing_engine_type_and_dtype): | |
engine_type, dtype = numeric_indexing_engine_type_and_dtype | |
# unique | |
arr = np.array([1, 3, 2], dtype=dtype) | |
engine = engine_type(arr) | |
assert engine.is_unique is True | |
# not unique | |
arr = np.array([1, 2, 1], dtype=dtype) | |
engine = engine_type(arr) | |
assert engine.is_unique is False | |
def test_get_loc(self, numeric_indexing_engine_type_and_dtype): | |
engine_type, dtype = numeric_indexing_engine_type_and_dtype | |
# unique | |
arr = np.array([1, 2, 3], dtype=dtype) | |
engine = engine_type(arr) | |
assert engine.get_loc(2) == 1 | |
# monotonic | |
num = 1000 | |
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) | |
engine = engine_type(arr) | |
assert engine.get_loc(2) == slice(1000, 2000) | |
# not monotonic | |
arr = np.array([1, 2, 3] * num, dtype=dtype) | |
engine = engine_type(arr) | |
expected = np.array([False, True, False] * num, dtype=bool) | |
result = engine.get_loc(2) | |
assert (result == expected).all() | |
class TestObjectEngine: | |
engine_type = libindex.ObjectEngine | |
dtype = np.object_ | |
values = list("abc") | |
def test_is_monotonic(self): | |
num = 1000 | |
arr = np.array(["a"] * num + ["a"] * num + ["c"] * num, dtype=self.dtype) | |
# monotonic increasing | |
engine = self.engine_type(arr) | |
assert engine.is_monotonic_increasing is True | |
assert engine.is_monotonic_decreasing is False | |
# monotonic decreasing | |
engine = self.engine_type(arr[::-1]) | |
assert engine.is_monotonic_increasing is False | |
assert engine.is_monotonic_decreasing is True | |
# neither monotonic increasing or decreasing | |
arr = np.array(["a"] * num + ["b"] * num + ["a"] * num, dtype=self.dtype) | |
engine = self.engine_type(arr[::-1]) | |
assert engine.is_monotonic_increasing is False | |
assert engine.is_monotonic_decreasing is False | |
def test_is_unique(self): | |
# unique | |
arr = np.array(self.values, dtype=self.dtype) | |
engine = self.engine_type(arr) | |
assert engine.is_unique is True | |
# not unique | |
arr = np.array(["a", "b", "a"], dtype=self.dtype) | |
engine = self.engine_type(arr) | |
assert engine.is_unique is False | |
def test_get_loc(self): | |
# unique | |
arr = np.array(self.values, dtype=self.dtype) | |
engine = self.engine_type(arr) | |
assert engine.get_loc("b") == 1 | |
# monotonic | |
num = 1000 | |
arr = np.array(["a"] * num + ["b"] * num + ["c"] * num, dtype=self.dtype) | |
engine = self.engine_type(arr) | |
assert engine.get_loc("b") == slice(1000, 2000) | |
# not monotonic | |
arr = np.array(self.values * num, dtype=self.dtype) | |
engine = self.engine_type(arr) | |
expected = np.array([False, True, False] * num, dtype=bool) | |
result = engine.get_loc("b") | |
assert (result == expected).all() | |