peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexes
/test_indexing.py
""" | |
test_indexing tests the following Index methods: | |
__getitem__ | |
get_loc | |
get_value | |
__contains__ | |
take | |
where | |
get_indexer | |
get_indexer_for | |
slice_locs | |
asof_locs | |
The corresponding tests.indexes.[index_type].test_indexing files | |
contain tests for the corresponding methods specific to those Index subclasses. | |
""" | |
import numpy as np | |
import pytest | |
from pandas.errors import InvalidIndexError | |
from pandas.core.dtypes.common import ( | |
is_float_dtype, | |
is_scalar, | |
) | |
from pandas import ( | |
NA, | |
DatetimeIndex, | |
Index, | |
IntervalIndex, | |
MultiIndex, | |
NaT, | |
PeriodIndex, | |
TimedeltaIndex, | |
) | |
import pandas._testing as tm | |
class TestTake: | |
def test_take_invalid_kwargs(self, index): | |
indices = [1, 2] | |
msg = r"take\(\) got an unexpected keyword argument 'foo'" | |
with pytest.raises(TypeError, match=msg): | |
index.take(indices, foo=2) | |
msg = "the 'out' parameter is not supported" | |
with pytest.raises(ValueError, match=msg): | |
index.take(indices, out=indices) | |
msg = "the 'mode' parameter is not supported" | |
with pytest.raises(ValueError, match=msg): | |
index.take(indices, mode="clip") | |
def test_take(self, index): | |
indexer = [4, 3, 0, 2] | |
if len(index) < 5: | |
pytest.skip("Test doesn't make sense since not enough elements") | |
result = index.take(indexer) | |
expected = index[indexer] | |
assert result.equals(expected) | |
if not isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): | |
# GH 10791 | |
msg = r"'(.*Index)' object has no attribute 'freq'" | |
with pytest.raises(AttributeError, match=msg): | |
index.freq | |
def test_take_indexer_type(self): | |
# GH#42875 | |
integer_index = Index([0, 1, 2, 3]) | |
scalar_index = 1 | |
msg = "Expected indices to be array-like" | |
with pytest.raises(TypeError, match=msg): | |
integer_index.take(scalar_index) | |
def test_take_minus1_without_fill(self, index): | |
# -1 does not get treated as NA unless allow_fill=True is passed | |
if len(index) == 0: | |
# Test is not applicable | |
pytest.skip("Test doesn't make sense for empty index") | |
result = index.take([0, 0, -1]) | |
expected = index.take([0, 0, len(index) - 1]) | |
tm.assert_index_equal(result, expected) | |
class TestContains: | |
def test_index_contains(self, index, val): | |
assert val in index | |
def test_index_not_contains(self, index, val): | |
assert val not in index | |
def test_mixed_index_contains(self, index, val): | |
# GH#19860 | |
assert val in index | |
def test_mixed_index_not_contains(self, index, val): | |
# GH#19860 | |
assert val not in index | |
def test_contains_with_float_index(self, any_real_numpy_dtype): | |
# GH#22085 | |
dtype = any_real_numpy_dtype | |
data = [0, 1, 2, 3] if not is_float_dtype(dtype) else [0.1, 1.1, 2.2, 3.3] | |
index = Index(data, dtype=dtype) | |
if not is_float_dtype(index.dtype): | |
assert 1.1 not in index | |
assert 1.0 in index | |
assert 1 in index | |
else: | |
assert 1.1 in index | |
assert 1.0 not in index | |
assert 1 not in index | |
def test_contains_requires_hashable_raises(self, index): | |
if isinstance(index, MultiIndex): | |
return # TODO: do we want this to raise? | |
msg = "unhashable type: 'list'" | |
with pytest.raises(TypeError, match=msg): | |
[] in index | |
msg = "|".join( | |
[ | |
r"unhashable type: 'dict'", | |
r"must be real number, not dict", | |
r"an integer is required", | |
r"\{\}", | |
r"pandas\._libs\.interval\.IntervalTree' is not iterable", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
{} in index._engine | |
class TestGetLoc: | |
def test_get_loc_non_hashable(self, index): | |
with pytest.raises(InvalidIndexError, match="[0, 1]"): | |
index.get_loc([0, 1]) | |
def test_get_loc_non_scalar_hashable(self, index): | |
# GH52877 | |
from enum import Enum | |
class E(Enum): | |
X1 = "x1" | |
assert not is_scalar(E.X1) | |
exc = KeyError | |
msg = "<E.X1: 'x1'>" | |
if isinstance( | |
index, | |
( | |
DatetimeIndex, | |
TimedeltaIndex, | |
PeriodIndex, | |
IntervalIndex, | |
), | |
): | |
# TODO: make these more consistent? | |
exc = InvalidIndexError | |
msg = "E.X1" | |
with pytest.raises(exc, match=msg): | |
index.get_loc(E.X1) | |
def test_get_loc_generator(self, index): | |
exc = KeyError | |
if isinstance( | |
index, | |
( | |
DatetimeIndex, | |
TimedeltaIndex, | |
PeriodIndex, | |
IntervalIndex, | |
MultiIndex, | |
), | |
): | |
# TODO: make these more consistent? | |
exc = InvalidIndexError | |
with pytest.raises(exc, match="generator object"): | |
# MultiIndex specifically checks for generator; others for scalar | |
index.get_loc(x for x in range(5)) | |
def test_get_loc_masked_duplicated_na(self): | |
# GH#48411 | |
idx = Index([1, 2, NA, NA], dtype="Int64") | |
result = idx.get_loc(NA) | |
expected = np.array([False, False, True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestGetIndexer: | |
def test_get_indexer_base(self, index): | |
if index._index_as_unique: | |
expected = np.arange(index.size, dtype=np.intp) | |
actual = index.get_indexer(index) | |
tm.assert_numpy_array_equal(expected, actual) | |
else: | |
msg = "Reindexing only valid with uniquely valued Index objects" | |
with pytest.raises(InvalidIndexError, match=msg): | |
index.get_indexer(index) | |
with pytest.raises(ValueError, match="Invalid fill method"): | |
index.get_indexer(index, method="invalid") | |
def test_get_indexer_consistency(self, index): | |
# See GH#16819 | |
if index._index_as_unique: | |
indexer = index.get_indexer(index[0:2]) | |
assert isinstance(indexer, np.ndarray) | |
assert indexer.dtype == np.intp | |
else: | |
msg = "Reindexing only valid with uniquely valued Index objects" | |
with pytest.raises(InvalidIndexError, match=msg): | |
index.get_indexer(index[0:2]) | |
indexer, _ = index.get_indexer_non_unique(index[0:2]) | |
assert isinstance(indexer, np.ndarray) | |
assert indexer.dtype == np.intp | |
def test_get_indexer_masked_duplicated_na(self): | |
# GH#48411 | |
idx = Index([1, 2, NA, NA], dtype="Int64") | |
result = idx.get_indexer_for(Index([1, NA], dtype="Int64")) | |
expected = np.array([0, 2, 3], dtype=result.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestConvertSliceIndexer: | |
def test_convert_almost_null_slice(self, index): | |
# slice with None at both ends, but not step | |
key = slice(None, None, "foo") | |
if isinstance(index, IntervalIndex): | |
msg = "label-based slicing with step!=1 is not supported for IntervalIndex" | |
with pytest.raises(ValueError, match=msg): | |
index._convert_slice_indexer(key, "loc") | |
else: | |
msg = "'>=' not supported between instances of 'str' and 'int'" | |
with pytest.raises(TypeError, match=msg): | |
index._convert_slice_indexer(key, "loc") | |
class TestPutmask: | |
def test_putmask_with_wrong_mask(self, index): | |
# GH#18368 | |
if not len(index): | |
pytest.skip("Test doesn't make sense for empty index") | |
fill = index[0] | |
msg = "putmask: mask and data must be the same size" | |
with pytest.raises(ValueError, match=msg): | |
index.putmask(np.ones(len(index) + 1, np.bool_), fill) | |
with pytest.raises(ValueError, match=msg): | |
index.putmask(np.ones(len(index) - 1, np.bool_), fill) | |
with pytest.raises(ValueError, match=msg): | |
index.putmask("foo", fill) | |
def test_getitem_deprecated_float(idx): | |
# https://github.com/pandas-dev/pandas/issues/34191 | |
msg = "Indexing with a float is no longer supported" | |
with pytest.raises(IndexError, match=msg): | |
idx[1.0] | |
def test_get_indexer_non_unique_multiple_nans(idx, target, expected): | |
# GH 35392 | |
axis = Index(idx) | |
actual = axis.get_indexer_for(target) | |
tm.assert_numpy_array_equal(actual, expected) | |
def test_get_indexer_non_unique_nans_in_object_dtype_target(nulls_fixture): | |
idx = Index([1.0, 2.0]) | |
target = Index([1, nulls_fixture], dtype="object") | |
result_idx, result_missing = idx.get_indexer_non_unique(target) | |
tm.assert_numpy_array_equal(result_idx, np.array([0, -1], dtype=np.intp)) | |
tm.assert_numpy_array_equal(result_missing, np.array([1], dtype=np.intp)) | |