peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/interchange
/test_impl.py
from datetime import ( | |
datetime, | |
timezone, | |
) | |
import numpy as np | |
import pytest | |
from pandas._libs.tslibs import iNaT | |
from pandas.compat import ( | |
is_ci_environment, | |
is_platform_windows, | |
) | |
from pandas.compat.numpy import np_version_lt1p23 | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.interchange.column import PandasColumn | |
from pandas.core.interchange.dataframe_protocol import ( | |
ColumnNullType, | |
DtypeKind, | |
) | |
from pandas.core.interchange.from_dataframe import from_dataframe | |
from pandas.core.interchange.utils import ArrowCTypes | |
def data_categorical(): | |
return { | |
"ordered": pd.Categorical(list("testdata") * 30, ordered=True), | |
"unordered": pd.Categorical(list("testdata") * 30, ordered=False), | |
} | |
def string_data(): | |
return { | |
"separator data": [ | |
"abC|DeF,Hik", | |
"234,3245.67", | |
"gSaf,qWer|Gre", | |
"asd3,4sad|", | |
np.nan, | |
] | |
} | |
def test_categorical_dtype(data, data_categorical): | |
df = pd.DataFrame({"A": (data_categorical[data[0]])}) | |
col = df.__dataframe__().get_column_by_name("A") | |
assert col.dtype[0] == DtypeKind.CATEGORICAL | |
assert col.null_count == 0 | |
assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1) | |
assert col.num_chunks() == 1 | |
desc_cat = col.describe_categorical | |
assert desc_cat["is_ordered"] == data[1] | |
assert desc_cat["is_dictionary"] is True | |
assert isinstance(desc_cat["categories"], PandasColumn) | |
tm.assert_series_equal( | |
desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"]) | |
) | |
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) | |
def test_categorical_pyarrow(): | |
# GH 49889 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"] | |
table = pa.table({"weekday": pa.array(arr).dictionary_encode()}) | |
exchange_df = table.__dataframe__() | |
result = from_dataframe(exchange_df) | |
weekday = pd.Categorical( | |
arr, categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] | |
) | |
expected = pd.DataFrame({"weekday": weekday}) | |
tm.assert_frame_equal(result, expected) | |
def test_empty_categorical_pyarrow(): | |
# https://github.com/pandas-dev/pandas/issues/53077 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
arr = [None] | |
table = pa.table({"arr": pa.array(arr, "float64").dictionary_encode()}) | |
exchange_df = table.__dataframe__() | |
result = pd.api.interchange.from_dataframe(exchange_df) | |
expected = pd.DataFrame({"arr": pd.Categorical([np.nan])}) | |
tm.assert_frame_equal(result, expected) | |
def test_large_string_pyarrow(): | |
# GH 52795 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
arr = ["Mon", "Tue"] | |
table = pa.table({"weekday": pa.array(arr, "large_string")}) | |
exchange_df = table.__dataframe__() | |
result = from_dataframe(exchange_df) | |
expected = pd.DataFrame({"weekday": ["Mon", "Tue"]}) | |
tm.assert_frame_equal(result, expected) | |
# check round-trip | |
assert pa.Table.equals(pa.interchange.from_dataframe(result), table) | |
def test_bitmasks_pyarrow(offset, length, expected_values): | |
# GH 52795 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
arr = [3.3, None, 2.1] | |
table = pa.table({"arr": arr}).slice(offset, length) | |
exchange_df = table.__dataframe__() | |
result = from_dataframe(exchange_df) | |
expected = pd.DataFrame({"arr": expected_values}) | |
tm.assert_frame_equal(result, expected) | |
# check round-trip | |
assert pa.Table.equals(pa.interchange.from_dataframe(result), table) | |
def test_dataframe(data): | |
NCOLS, NROWS = 10, 20 | |
data = { | |
f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [data() for _ in range(NROWS)] | |
for i in range(NCOLS) | |
} | |
df = pd.DataFrame(data) | |
df2 = df.__dataframe__() | |
assert df2.num_columns() == NCOLS | |
assert df2.num_rows() == NROWS | |
assert list(df2.column_names()) == list(data.keys()) | |
indices = (0, 2) | |
names = tuple(list(data.keys())[idx] for idx in indices) | |
result = from_dataframe(df2.select_columns(indices)) | |
expected = from_dataframe(df2.select_columns_by_name(names)) | |
tm.assert_frame_equal(result, expected) | |
assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list) | |
assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list) | |
def test_missing_from_masked(): | |
df = pd.DataFrame( | |
{ | |
"x": np.array([1.0, 2.0, 3.0, 4.0, 0.0]), | |
"y": np.array([1.5, 2.5, 3.5, 4.5, 0]), | |
"z": np.array([1.0, 0.0, 1.0, 1.0, 1.0]), | |
} | |
) | |
rng = np.random.default_rng(2) | |
dict_null = {col: rng.integers(low=0, high=len(df)) for col in df.columns} | |
for col, num_nulls in dict_null.items(): | |
null_idx = df.index[ | |
rng.choice(np.arange(len(df)), size=num_nulls, replace=False) | |
] | |
df.loc[null_idx, col] = None | |
df2 = df.__dataframe__() | |
assert df2.get_column_by_name("x").null_count == dict_null["x"] | |
assert df2.get_column_by_name("y").null_count == dict_null["y"] | |
assert df2.get_column_by_name("z").null_count == dict_null["z"] | |
def test_mixed_data(data): | |
df = pd.DataFrame(data) | |
df2 = df.__dataframe__() | |
for col_name in df.columns: | |
assert df2.get_column_by_name(col_name).null_count == 0 | |
def test_mixed_missing(): | |
df = pd.DataFrame( | |
{ | |
"x": np.array([True, None, False, None, True]), | |
"y": np.array([None, 2, None, 1, 2]), | |
"z": np.array([9.2, 10.5, None, 11.8, None]), | |
} | |
) | |
df2 = df.__dataframe__() | |
for col_name in df.columns: | |
assert df2.get_column_by_name(col_name).null_count == 2 | |
def test_string(string_data): | |
test_str_data = string_data["separator data"] + [""] | |
df = pd.DataFrame({"A": test_str_data}) | |
col = df.__dataframe__().get_column_by_name("A") | |
assert col.size() == 6 | |
assert col.null_count == 1 | |
assert col.dtype[0] == DtypeKind.STRING | |
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0) | |
df_sliced = df[1:] | |
col = df_sliced.__dataframe__().get_column_by_name("A") | |
assert col.size() == 5 | |
assert col.null_count == 1 | |
assert col.dtype[0] == DtypeKind.STRING | |
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0) | |
def test_nonstring_object(): | |
df = pd.DataFrame({"A": ["a", 10, 1.0, ()]}) | |
col = df.__dataframe__().get_column_by_name("A") | |
with pytest.raises(NotImplementedError, match="not supported yet"): | |
col.dtype | |
def test_datetime(): | |
df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]}) | |
col = df.__dataframe__().get_column_by_name("A") | |
assert col.size() == 2 | |
assert col.null_count == 1 | |
assert col.dtype[0] == DtypeKind.DATETIME | |
assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT) | |
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) | |
def test_categorical_to_numpy_dlpack(): | |
# https://github.com/pandas-dev/pandas/issues/48393 | |
df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])}) | |
col = df.__dataframe__().get_column_by_name("A") | |
result = np.from_dlpack(col.get_buffers()["data"][0]) | |
expected = np.array([0, 1, 0], dtype="int8") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_empty_pyarrow(data): | |
# GH 53155 | |
pytest.importorskip("pyarrow", "11.0.0") | |
from pyarrow.interchange import from_dataframe as pa_from_dataframe | |
expected = pd.DataFrame(data) | |
arrow_df = pa_from_dataframe(expected) | |
result = from_dataframe(arrow_df) | |
tm.assert_frame_equal(result, expected) | |
def test_multi_chunk_pyarrow() -> None: | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) | |
names = ["n_legs"] | |
table = pa.table([n_legs], names=names) | |
with pytest.raises( | |
RuntimeError, | |
match="To join chunks a copy is required which is " | |
"forbidden by allow_copy=False", | |
): | |
pd.api.interchange.from_dataframe(table, allow_copy=False) | |
def test_multi_chunk_column() -> None: | |
pytest.importorskip("pyarrow", "11.0.0") | |
ser = pd.Series([1, 2, None], dtype="Int64[pyarrow]") | |
df = pd.concat([ser, ser], ignore_index=True).to_frame("a") | |
df_orig = df.copy() | |
with pytest.raises( | |
RuntimeError, match="Found multi-chunk pyarrow array, but `allow_copy` is False" | |
): | |
pd.api.interchange.from_dataframe(df.__dataframe__(allow_copy=False)) | |
result = pd.api.interchange.from_dataframe(df.__dataframe__(allow_copy=True)) | |
# Interchange protocol defaults to creating numpy-backed columns, so currently this | |
# is 'float64'. | |
expected = pd.DataFrame({"a": [1.0, 2.0, None, 1.0, 2.0, None]}, dtype="float64") | |
tm.assert_frame_equal(result, expected) | |
# Check that the rechunking we did didn't modify the original DataFrame. | |
tm.assert_frame_equal(df, df_orig) | |
assert len(df["a"].array._pa_array.chunks) == 2 | |
assert len(df_orig["a"].array._pa_array.chunks) == 2 | |
def test_timestamp_ns_pyarrow(): | |
# GH 56712 | |
pytest.importorskip("pyarrow", "11.0.0") | |
timestamp_args = { | |
"year": 2000, | |
"month": 1, | |
"day": 1, | |
"hour": 1, | |
"minute": 1, | |
"second": 1, | |
} | |
df = pd.Series( | |
[datetime(**timestamp_args)], | |
dtype="timestamp[ns][pyarrow]", | |
name="col0", | |
).to_frame() | |
dfi = df.__dataframe__() | |
result = pd.api.interchange.from_dataframe(dfi)["col0"].item() | |
expected = pd.Timestamp(**timestamp_args) | |
assert result == expected | |
def test_datetimetzdtype(tz, unit): | |
# GH 54239 | |
tz_data = ( | |
pd.date_range("2018-01-01", periods=5, freq="D").tz_localize(tz).as_unit(unit) | |
) | |
df = pd.DataFrame({"ts_tz": tz_data}) | |
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) | |
def test_interchange_from_non_pandas_tz_aware(request): | |
# GH 54239, 54287 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
import pyarrow.compute as pc | |
if is_platform_windows() and is_ci_environment(): | |
mark = pytest.mark.xfail( | |
raises=pa.ArrowInvalid, | |
reason=( | |
"TODO: Set ARROW_TIMEZONE_DATABASE environment variable " | |
"on CI to path to the tzdata for pyarrow." | |
), | |
) | |
request.applymarker(mark) | |
arr = pa.array([datetime(2020, 1, 1), None, datetime(2020, 1, 2)]) | |
arr = pc.assume_timezone(arr, "Asia/Kathmandu") | |
table = pa.table({"arr": arr}) | |
exchange_df = table.__dataframe__() | |
result = from_dataframe(exchange_df) | |
expected = pd.DataFrame( | |
["2020-01-01 00:00:00+05:45", "NaT", "2020-01-02 00:00:00+05:45"], | |
columns=["arr"], | |
dtype="datetime64[us, Asia/Kathmandu]", | |
) | |
tm.assert_frame_equal(expected, result) | |
def test_interchange_from_corrected_buffer_dtypes(monkeypatch) -> None: | |
# https://github.com/pandas-dev/pandas/issues/54781 | |
df = pd.DataFrame({"a": ["foo", "bar"]}).__dataframe__() | |
interchange = df.__dataframe__() | |
column = interchange.get_column_by_name("a") | |
buffers = column.get_buffers() | |
buffers_data = buffers["data"] | |
buffer_dtype = buffers_data[1] | |
buffer_dtype = ( | |
DtypeKind.UINT, | |
8, | |
ArrowCTypes.UINT8, | |
buffer_dtype[3], | |
) | |
buffers["data"] = (buffers_data[0], buffer_dtype) | |
column.get_buffers = lambda: buffers | |
interchange.get_column_by_name = lambda _: column | |
monkeypatch.setattr(df, "__dataframe__", lambda allow_copy: interchange) | |
pd.api.interchange.from_dataframe(df) | |
def test_empty_string_column(): | |
# https://github.com/pandas-dev/pandas/issues/56703 | |
df = pd.DataFrame({"a": []}, dtype=str) | |
df2 = df.__dataframe__() | |
result = pd.api.interchange.from_dataframe(df2) | |
tm.assert_frame_equal(df, result) | |
def test_large_string(): | |
# GH#56702 | |
pytest.importorskip("pyarrow") | |
df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]") | |
result = pd.api.interchange.from_dataframe(df.__dataframe__()) | |
expected = pd.DataFrame({"a": ["x"]}, dtype="object") | |
tm.assert_frame_equal(result, expected) | |
def test_non_str_names(): | |
# https://github.com/pandas-dev/pandas/issues/56701 | |
df = pd.Series([1, 2, 3], name=0).to_frame() | |
names = df.__dataframe__().column_names() | |
assert names == ["0"] | |
def test_non_str_names_w_duplicates(): | |
# https://github.com/pandas-dev/pandas/issues/56701 | |
df = pd.DataFrame({"0": [1, 2, 3], 0: [4, 5, 6]}) | |
dfi = df.__dataframe__() | |
with pytest.raises( | |
TypeError, | |
match=( | |
"Expected a Series, got a DataFrame. This likely happened because you " | |
"called __dataframe__ on a DataFrame which, after converting column " | |
r"names to string, resulted in duplicated names: Index\(\['0', '0'\], " | |
r"dtype='object'\). Please rename these columns before using the " | |
"interchange protocol." | |
), | |
): | |
pd.api.interchange.from_dataframe(dfi, allow_copy=False) | |
def test_pandas_nullable_with_missing_values( | |
data: list, dtype: str, expected_dtype: str | |
) -> None: | |
# https://github.com/pandas-dev/pandas/issues/57643 | |
# https://github.com/pandas-dev/pandas/issues/57664 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
import pyarrow.interchange as pai | |
if expected_dtype == "timestamp[us, tz=Asia/Kathmandu]": | |
expected_dtype = pa.timestamp("us", "Asia/Kathmandu") | |
df = pd.DataFrame({"a": data}, dtype=dtype) | |
result = pai.from_dataframe(df.__dataframe__())["a"] | |
assert result.type == expected_dtype | |
assert result[0].as_py() == data[0] | |
assert result[1].as_py() == data[1] | |
assert result[2].as_py() is None | |
def test_pandas_nullable_without_missing_values( | |
data: list, dtype: str, expected_dtype: str | |
) -> None: | |
# https://github.com/pandas-dev/pandas/issues/57643 | |
pa = pytest.importorskip("pyarrow", "11.0.0") | |
import pyarrow.interchange as pai | |
if expected_dtype == "timestamp[us, tz=Asia/Kathmandu]": | |
expected_dtype = pa.timestamp("us", "Asia/Kathmandu") | |
df = pd.DataFrame({"a": data}, dtype=dtype) | |
result = pai.from_dataframe(df.__dataframe__())["a"] | |
assert result.type == expected_dtype | |
assert result[0].as_py() == data[0] | |
assert result[1].as_py() == data[1] | |
assert result[2].as_py() == data[2] | |
def test_string_validity_buffer() -> None: | |
# https://github.com/pandas-dev/pandas/issues/57761 | |
pytest.importorskip("pyarrow", "11.0.0") | |
df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]") | |
result = df.__dataframe__().get_column_by_name("a").get_buffers()["validity"] | |
assert result is None | |
def test_string_validity_buffer_no_missing() -> None: | |
# https://github.com/pandas-dev/pandas/issues/57762 | |
pytest.importorskip("pyarrow", "11.0.0") | |
df = pd.DataFrame({"a": ["x", None]}, dtype="large_string[pyarrow]") | |
validity = df.__dataframe__().get_column_by_name("a").get_buffers()["validity"] | |
assert validity is not None | |
result = validity[1] | |
expected = (DtypeKind.BOOL, 1, ArrowCTypes.BOOL, "=") | |
assert result == expected | |
def test_empty_dataframe(): | |
# https://github.com/pandas-dev/pandas/issues/56700 | |
df = pd.DataFrame({"a": []}, dtype="int8") | |
dfi = df.__dataframe__() | |
result = pd.api.interchange.from_dataframe(dfi, allow_copy=False) | |
expected = pd.DataFrame({"a": []}, dtype="int8") | |
tm.assert_frame_equal(result, expected) | |