peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/libs
/test_hashtable.py
from collections.abc import Generator | |
from contextlib import contextmanager | |
import re | |
import struct | |
import tracemalloc | |
import numpy as np | |
import pytest | |
from pandas._libs import hashtable as ht | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.algorithms import isin | |
def activated_tracemalloc() -> Generator[None, None, None]: | |
tracemalloc.start() | |
try: | |
yield | |
finally: | |
tracemalloc.stop() | |
def get_allocated_khash_memory(): | |
snapshot = tracemalloc.take_snapshot() | |
snapshot = snapshot.filter_traces( | |
(tracemalloc.DomainFilter(True, ht.get_hashtable_trace_domain()),) | |
) | |
return sum(x.size for x in snapshot.traces) | |
class TestHashTable: | |
def test_get_set_contains_len(self, table_type, dtype): | |
index = 5 | |
table = table_type(55) | |
assert len(table) == 0 | |
assert index not in table | |
table.set_item(index, 42) | |
assert len(table) == 1 | |
assert index in table | |
assert table.get_item(index) == 42 | |
table.set_item(index + 1, 41) | |
assert index in table | |
assert index + 1 in table | |
assert len(table) == 2 | |
assert table.get_item(index) == 42 | |
assert table.get_item(index + 1) == 41 | |
table.set_item(index, 21) | |
assert index in table | |
assert index + 1 in table | |
assert len(table) == 2 | |
assert table.get_item(index) == 21 | |
assert table.get_item(index + 1) == 41 | |
assert index + 2 not in table | |
table.set_item(index + 1, 21) | |
assert index in table | |
assert index + 1 in table | |
assert len(table) == 2 | |
assert table.get_item(index) == 21 | |
assert table.get_item(index + 1) == 21 | |
with pytest.raises(KeyError, match=str(index + 2)): | |
table.get_item(index + 2) | |
def test_get_set_contains_len_mask(self, table_type, dtype): | |
if table_type == ht.PyObjectHashTable: | |
pytest.skip("Mask not supported for object") | |
index = 5 | |
table = table_type(55, uses_mask=True) | |
assert len(table) == 0 | |
assert index not in table | |
table.set_item(index, 42) | |
assert len(table) == 1 | |
assert index in table | |
assert table.get_item(index) == 42 | |
with pytest.raises(KeyError, match="NA"): | |
table.get_na() | |
table.set_item(index + 1, 41) | |
table.set_na(41) | |
assert pd.NA in table | |
assert index in table | |
assert index + 1 in table | |
assert len(table) == 3 | |
assert table.get_item(index) == 42 | |
assert table.get_item(index + 1) == 41 | |
assert table.get_na() == 41 | |
table.set_na(21) | |
assert index in table | |
assert index + 1 in table | |
assert len(table) == 3 | |
assert table.get_item(index + 1) == 41 | |
assert table.get_na() == 21 | |
assert index + 2 not in table | |
with pytest.raises(KeyError, match=str(index + 2)): | |
table.get_item(index + 2) | |
def test_map_keys_to_values(self, table_type, dtype, writable): | |
# only Int64HashTable has this method | |
if table_type == ht.Int64HashTable: | |
N = 77 | |
table = table_type() | |
keys = np.arange(N).astype(dtype) | |
vals = np.arange(N).astype(np.int64) + N | |
keys.flags.writeable = writable | |
vals.flags.writeable = writable | |
table.map_keys_to_values(keys, vals) | |
for i in range(N): | |
assert table.get_item(keys[i]) == i + N | |
def test_map_locations(self, table_type, dtype, writable): | |
N = 8 | |
table = table_type() | |
keys = (np.arange(N) + N).astype(dtype) | |
keys.flags.writeable = writable | |
table.map_locations(keys) | |
for i in range(N): | |
assert table.get_item(keys[i]) == i | |
def test_map_locations_mask(self, table_type, dtype, writable): | |
if table_type == ht.PyObjectHashTable: | |
pytest.skip("Mask not supported for object") | |
N = 3 | |
table = table_type(uses_mask=True) | |
keys = (np.arange(N) + N).astype(dtype) | |
keys.flags.writeable = writable | |
table.map_locations(keys, np.array([False, False, True])) | |
for i in range(N - 1): | |
assert table.get_item(keys[i]) == i | |
with pytest.raises(KeyError, match=re.escape(str(keys[N - 1]))): | |
table.get_item(keys[N - 1]) | |
assert table.get_na() == 2 | |
def test_lookup(self, table_type, dtype, writable): | |
N = 3 | |
table = table_type() | |
keys = (np.arange(N) + N).astype(dtype) | |
keys.flags.writeable = writable | |
table.map_locations(keys) | |
result = table.lookup(keys) | |
expected = np.arange(N) | |
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64)) | |
def test_lookup_wrong(self, table_type, dtype): | |
if dtype in (np.int8, np.uint8): | |
N = 100 | |
else: | |
N = 512 | |
table = table_type() | |
keys = (np.arange(N) + N).astype(dtype) | |
table.map_locations(keys) | |
wrong_keys = np.arange(N).astype(dtype) | |
result = table.lookup(wrong_keys) | |
assert np.all(result == -1) | |
def test_lookup_mask(self, table_type, dtype, writable): | |
if table_type == ht.PyObjectHashTable: | |
pytest.skip("Mask not supported for object") | |
N = 3 | |
table = table_type(uses_mask=True) | |
keys = (np.arange(N) + N).astype(dtype) | |
mask = np.array([False, True, False]) | |
keys.flags.writeable = writable | |
table.map_locations(keys, mask) | |
result = table.lookup(keys, mask) | |
expected = np.arange(N) | |
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64)) | |
result = table.lookup(np.array([1 + N]).astype(dtype), np.array([False])) | |
tm.assert_numpy_array_equal( | |
result.astype(np.int64), np.array([-1], dtype=np.int64) | |
) | |
def test_unique(self, table_type, dtype, writable): | |
if dtype in (np.int8, np.uint8): | |
N = 88 | |
else: | |
N = 1000 | |
table = table_type() | |
expected = (np.arange(N) + N).astype(dtype) | |
keys = np.repeat(expected, 5) | |
keys.flags.writeable = writable | |
unique = table.unique(keys) | |
tm.assert_numpy_array_equal(unique, expected) | |
def test_tracemalloc_works(self, table_type, dtype): | |
if dtype in (np.int8, np.uint8): | |
N = 256 | |
else: | |
N = 30000 | |
keys = np.arange(N).astype(dtype) | |
with activated_tracemalloc(): | |
table = table_type() | |
table.map_locations(keys) | |
used = get_allocated_khash_memory() | |
my_size = table.sizeof() | |
assert used == my_size | |
del table | |
assert get_allocated_khash_memory() == 0 | |
def test_tracemalloc_for_empty(self, table_type, dtype): | |
with activated_tracemalloc(): | |
table = table_type() | |
used = get_allocated_khash_memory() | |
my_size = table.sizeof() | |
assert used == my_size | |
del table | |
assert get_allocated_khash_memory() == 0 | |
def test_get_state(self, table_type, dtype): | |
table = table_type(1000) | |
state = table.get_state() | |
assert state["size"] == 0 | |
assert state["n_occupied"] == 0 | |
assert "n_buckets" in state | |
assert "upper_bound" in state | |
def test_no_reallocation(self, table_type, dtype, N): | |
keys = np.arange(N).astype(dtype) | |
preallocated_table = table_type(N) | |
n_buckets_start = preallocated_table.get_state()["n_buckets"] | |
preallocated_table.map_locations(keys) | |
n_buckets_end = preallocated_table.get_state()["n_buckets"] | |
# original number of buckets was enough: | |
assert n_buckets_start == n_buckets_end | |
# check with clean table (not too much preallocated) | |
clean_table = table_type() | |
clean_table.map_locations(keys) | |
assert n_buckets_start == clean_table.get_state()["n_buckets"] | |
class TestHashTableUnsorted: | |
# TODO: moved from test_algos; may be redundancies with other tests | |
def test_string_hashtable_set_item_signature(self): | |
# GH#30419 fix typing in StringHashTable.set_item to prevent segfault | |
tbl = ht.StringHashTable() | |
tbl.set_item("key", 1) | |
assert tbl.get_item("key") == 1 | |
with pytest.raises(TypeError, match="'key' has incorrect type"): | |
# key arg typed as string, not object | |
tbl.set_item(4, 6) | |
with pytest.raises(TypeError, match="'val' has incorrect type"): | |
tbl.get_item(4) | |
def test_lookup_nan(self, writable): | |
# GH#21688 ensure we can deal with readonly memory views | |
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3]) | |
xs.setflags(write=writable) | |
m = ht.Float64HashTable() | |
m.map_locations(xs) | |
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp)) | |
def test_add_signed_zeros(self): | |
# GH#21866 inconsistent hash-function for float64 | |
# default hash-function would lead to different hash-buckets | |
# for 0.0 and -0.0 if there are more than 2^30 hash-buckets | |
# but this would mean 16GB | |
N = 4 # 12 * 10**8 would trigger the error, if you have enough memory | |
m = ht.Float64HashTable(N) | |
m.set_item(0.0, 0) | |
m.set_item(-0.0, 0) | |
assert len(m) == 1 # 0.0 and -0.0 are equivalent | |
def test_add_different_nans(self): | |
# GH#21866 inconsistent hash-function for float64 | |
# create different nans from bit-patterns: | |
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0] | |
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0] | |
assert NAN1 != NAN1 | |
assert NAN2 != NAN2 | |
# default hash function would lead to different hash-buckets | |
# for NAN1 and NAN2 even if there are only 4 buckets: | |
m = ht.Float64HashTable() | |
m.set_item(NAN1, 0) | |
m.set_item(NAN2, 0) | |
assert len(m) == 1 # NAN1 and NAN2 are equivalent | |
def test_lookup_overflow(self, writable): | |
xs = np.array([1, 2, 2**63], dtype=np.uint64) | |
# GH 21688 ensure we can deal with readonly memory views | |
xs.setflags(write=writable) | |
m = ht.UInt64HashTable() | |
m.map_locations(xs) | |
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp)) | |
# resizing to 0 is special case | |
def test_vector_resize( | |
self, writable, htable, uniques, dtype, safely_resizes, nvals | |
): | |
# Test for memory errors after internal vector | |
# reallocations (GH 7157) | |
# Changed from using np.random.default_rng(2).rand to range | |
# which could cause flaky CI failures when safely_resizes=False | |
vals = np.array(range(1000), dtype=dtype) | |
# GH 21688 ensures we can deal with read-only memory views | |
vals.setflags(write=writable) | |
# initialise instances; cannot initialise in parametrization, | |
# as otherwise external views would be held on the array (which is | |
# one of the things this test is checking) | |
htable = htable() | |
uniques = uniques() | |
# get_labels may append to uniques | |
htable.get_labels(vals[:nvals], uniques, 0, -1) | |
# to_array() sets an external_view_exists flag on uniques. | |
tmp = uniques.to_array() | |
oldshape = tmp.shape | |
# subsequent get_labels() calls can no longer append to it | |
# (except for StringHashTables + ObjectVector) | |
if safely_resizes: | |
htable.get_labels(vals, uniques, 0, -1) | |
else: | |
with pytest.raises(ValueError, match="external reference.*"): | |
htable.get_labels(vals, uniques, 0, -1) | |
uniques.to_array() # should not raise here | |
assert tmp.shape == oldshape | |
def test_hashtable_large_sizehint(self, hashtable): | |
# GH#22729 smoketest for not raising when passing a large size_hint | |
size_hint = np.iinfo(np.uint32).max + 1 | |
hashtable(size_hint=size_hint) | |
class TestPyObjectHashTableWithNans: | |
def test_nan_float(self): | |
nan1 = float("nan") | |
nan2 = float("nan") | |
assert nan1 is not nan2 | |
table = ht.PyObjectHashTable() | |
table.set_item(nan1, 42) | |
assert table.get_item(nan2) == 42 | |
def test_nan_complex_both(self): | |
nan1 = complex(float("nan"), float("nan")) | |
nan2 = complex(float("nan"), float("nan")) | |
assert nan1 is not nan2 | |
table = ht.PyObjectHashTable() | |
table.set_item(nan1, 42) | |
assert table.get_item(nan2) == 42 | |
def test_nan_complex_real(self): | |
nan1 = complex(float("nan"), 1) | |
nan2 = complex(float("nan"), 1) | |
other = complex(float("nan"), 2) | |
assert nan1 is not nan2 | |
table = ht.PyObjectHashTable() | |
table.set_item(nan1, 42) | |
assert table.get_item(nan2) == 42 | |
with pytest.raises(KeyError, match=None) as error: | |
table.get_item(other) | |
assert str(error.value) == str(other) | |
def test_nan_complex_imag(self): | |
nan1 = complex(1, float("nan")) | |
nan2 = complex(1, float("nan")) | |
other = complex(2, float("nan")) | |
assert nan1 is not nan2 | |
table = ht.PyObjectHashTable() | |
table.set_item(nan1, 42) | |
assert table.get_item(nan2) == 42 | |
with pytest.raises(KeyError, match=None) as error: | |
table.get_item(other) | |
assert str(error.value) == str(other) | |
def test_nan_in_tuple(self): | |
nan1 = (float("nan"),) | |
nan2 = (float("nan"),) | |
assert nan1[0] is not nan2[0] | |
table = ht.PyObjectHashTable() | |
table.set_item(nan1, 42) | |
assert table.get_item(nan2) == 42 | |
def test_nan_in_nested_tuple(self): | |
nan1 = (1, (2, (float("nan"),))) | |
nan2 = (1, (2, (float("nan"),))) | |
other = (1, 2) | |
table = ht.PyObjectHashTable() | |
table.set_item(nan1, 42) | |
assert table.get_item(nan2) == 42 | |
with pytest.raises(KeyError, match=None) as error: | |
table.get_item(other) | |
assert str(error.value) == str(other) | |
def test_hash_equal_tuple_with_nans(): | |
a = (float("nan"), (float("nan"), float("nan"))) | |
b = (float("nan"), (float("nan"), float("nan"))) | |
assert ht.object_hash(a) == ht.object_hash(b) | |
assert ht.objects_are_equal(a, b) | |
def test_get_labels_groupby_for_Int64(writable): | |
table = ht.Int64HashTable() | |
vals = np.array([1, 2, -1, 2, 1, -1], dtype=np.int64) | |
vals.flags.writeable = writable | |
arr, unique = table.get_labels_groupby(vals) | |
expected_arr = np.array([0, 1, -1, 1, 0, -1], dtype=np.intp) | |
expected_unique = np.array([1, 2], dtype=np.int64) | |
tm.assert_numpy_array_equal(arr, expected_arr) | |
tm.assert_numpy_array_equal(unique, expected_unique) | |
def test_tracemalloc_works_for_StringHashTable(): | |
N = 1000 | |
keys = np.arange(N).astype(np.str_).astype(np.object_) | |
with activated_tracemalloc(): | |
table = ht.StringHashTable() | |
table.map_locations(keys) | |
used = get_allocated_khash_memory() | |
my_size = table.sizeof() | |
assert used == my_size | |
del table | |
assert get_allocated_khash_memory() == 0 | |
def test_tracemalloc_for_empty_StringHashTable(): | |
with activated_tracemalloc(): | |
table = ht.StringHashTable() | |
used = get_allocated_khash_memory() | |
my_size = table.sizeof() | |
assert used == my_size | |
del table | |
assert get_allocated_khash_memory() == 0 | |
def test_no_reallocation_StringHashTable(N): | |
keys = np.arange(N).astype(np.str_).astype(np.object_) | |
preallocated_table = ht.StringHashTable(N) | |
n_buckets_start = preallocated_table.get_state()["n_buckets"] | |
preallocated_table.map_locations(keys) | |
n_buckets_end = preallocated_table.get_state()["n_buckets"] | |
# original number of buckets was enough: | |
assert n_buckets_start == n_buckets_end | |
# check with clean table (not too much preallocated) | |
clean_table = ht.StringHashTable() | |
clean_table.map_locations(keys) | |
assert n_buckets_start == clean_table.get_state()["n_buckets"] | |
class TestHashTableWithNans: | |
def test_get_set_contains_len(self, table_type, dtype): | |
index = float("nan") | |
table = table_type() | |
assert index not in table | |
table.set_item(index, 42) | |
assert len(table) == 1 | |
assert index in table | |
assert table.get_item(index) == 42 | |
table.set_item(index, 41) | |
assert len(table) == 1 | |
assert index in table | |
assert table.get_item(index) == 41 | |
def test_map_locations(self, table_type, dtype): | |
N = 10 | |
table = table_type() | |
keys = np.full(N, np.nan, dtype=dtype) | |
table.map_locations(keys) | |
assert len(table) == 1 | |
assert table.get_item(np.nan) == N - 1 | |
def test_unique(self, table_type, dtype): | |
N = 1020 | |
table = table_type() | |
keys = np.full(N, np.nan, dtype=dtype) | |
unique = table.unique(keys) | |
assert np.all(np.isnan(unique)) and len(unique) == 1 | |
def test_unique_for_nan_objects_floats(): | |
table = ht.PyObjectHashTable() | |
keys = np.array([float("nan") for i in range(50)], dtype=np.object_) | |
unique = table.unique(keys) | |
assert len(unique) == 1 | |
def test_unique_for_nan_objects_complex(): | |
table = ht.PyObjectHashTable() | |
keys = np.array([complex(float("nan"), 1.0) for i in range(50)], dtype=np.object_) | |
unique = table.unique(keys) | |
assert len(unique) == 1 | |
def test_unique_for_nan_objects_tuple(): | |
table = ht.PyObjectHashTable() | |
keys = np.array( | |
[1] + [(1.0, (float("nan"), 1.0)) for i in range(50)], dtype=np.object_ | |
) | |
unique = table.unique(keys) | |
assert len(unique) == 2 | |
class TestHelpFunctions: | |
def test_value_count(self, dtype, writable): | |
N = 43 | |
expected = (np.arange(N) + N).astype(dtype) | |
values = np.repeat(expected, 5) | |
values.flags.writeable = writable | |
keys, counts, _ = ht.value_count(values, False) | |
tm.assert_numpy_array_equal(np.sort(keys), expected) | |
assert np.all(counts == 5) | |
def test_value_count_mask(self, dtype): | |
if dtype == np.object_: | |
pytest.skip("mask not implemented for object dtype") | |
values = np.array([1] * 5, dtype=dtype) | |
mask = np.zeros((5,), dtype=np.bool_) | |
mask[1] = True | |
mask[4] = True | |
keys, counts, na_counter = ht.value_count(values, False, mask=mask) | |
assert len(keys) == 2 | |
assert na_counter == 2 | |
def test_value_count_stable(self, dtype, writable): | |
# GH12679 | |
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype) | |
values.flags.writeable = writable | |
keys, counts, _ = ht.value_count(values, False) | |
tm.assert_numpy_array_equal(keys, values) | |
assert np.all(counts == 1) | |
def test_duplicated_first(self, dtype, writable): | |
N = 100 | |
values = np.repeat(np.arange(N).astype(dtype), 5) | |
values.flags.writeable = writable | |
result = ht.duplicated(values) | |
expected = np.ones_like(values, dtype=np.bool_) | |
expected[::5] = False | |
tm.assert_numpy_array_equal(result, expected) | |
def test_ismember_yes(self, dtype, writable): | |
N = 127 | |
arr = np.arange(N).astype(dtype) | |
values = np.arange(N).astype(dtype) | |
arr.flags.writeable = writable | |
values.flags.writeable = writable | |
result = ht.ismember(arr, values) | |
expected = np.ones_like(values, dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_ismember_no(self, dtype): | |
N = 17 | |
arr = np.arange(N).astype(dtype) | |
values = (np.arange(N) + N).astype(dtype) | |
result = ht.ismember(arr, values) | |
expected = np.zeros_like(values, dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_mode(self, dtype, writable): | |
if dtype in (np.int8, np.uint8): | |
N = 53 | |
else: | |
N = 11111 | |
values = np.repeat(np.arange(N).astype(dtype), 5) | |
values[0] = 42 | |
values.flags.writeable = writable | |
result = ht.mode(values, False)[0] | |
assert result == 42 | |
def test_mode_stable(self, dtype, writable): | |
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype) | |
values.flags.writeable = writable | |
keys = ht.mode(values, False)[0] | |
tm.assert_numpy_array_equal(keys, values) | |
def test_modes_with_nans(): | |
# GH42688, nans aren't mangled | |
nulls = [pd.NA, np.nan, pd.NaT, None] | |
values = np.array([True] + nulls * 2, dtype=np.object_) | |
modes = ht.mode(values, False)[0] | |
assert modes.size == len(nulls) | |
def test_unique_label_indices_intp(writable): | |
keys = np.array([1, 2, 2, 2, 1, 3], dtype=np.intp) | |
keys.flags.writeable = writable | |
result = ht.unique_label_indices(keys) | |
expected = np.array([0, 1, 5], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_unique_label_indices(): | |
a = np.random.default_rng(2).integers(1, 1 << 10, 1 << 15).astype(np.intp) | |
left = ht.unique_label_indices(a) | |
right = np.unique(a, return_index=True)[1] | |
tm.assert_numpy_array_equal(left, right, check_dtype=False) | |
a[np.random.default_rng(2).choice(len(a), 10)] = -1 | |
left = ht.unique_label_indices(a) | |
right = np.unique(a, return_index=True)[1][1:] | |
tm.assert_numpy_array_equal(left, right, check_dtype=False) | |
class TestHelpFunctionsWithNans: | |
def test_value_count(self, dtype): | |
values = np.array([np.nan, np.nan, np.nan], dtype=dtype) | |
keys, counts, _ = ht.value_count(values, True) | |
assert len(keys) == 0 | |
keys, counts, _ = ht.value_count(values, False) | |
assert len(keys) == 1 and np.all(np.isnan(keys)) | |
assert counts[0] == 3 | |
def test_duplicated_first(self, dtype): | |
values = np.array([np.nan, np.nan, np.nan], dtype=dtype) | |
result = ht.duplicated(values) | |
expected = np.array([False, True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_ismember_yes(self, dtype): | |
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) | |
values = np.array([np.nan, np.nan], dtype=dtype) | |
result = ht.ismember(arr, values) | |
expected = np.array([True, True, True], dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_ismember_no(self, dtype): | |
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) | |
values = np.array([1], dtype=dtype) | |
result = ht.ismember(arr, values) | |
expected = np.array([False, False, False], dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_mode(self, dtype): | |
values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype) | |
assert ht.mode(values, True)[0] == 42 | |
assert np.isnan(ht.mode(values, False)[0]) | |
def test_ismember_tuple_with_nans(): | |
# GH-41836 | |
values = [("a", float("nan")), ("b", 1)] | |
comps = [("a", float("nan"))] | |
msg = "isin with argument that is not not a Series" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = isin(values, comps) | |
expected = np.array([True, False], dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_float_complex_int_are_equal_as_objects(): | |
values = ["a", 5, 5.0, 5.0 + 0j] | |
comps = list(range(129)) | |
result = isin(np.array(values, dtype=object), np.asarray(comps)) | |
expected = np.array([False, True, True, True], dtype=np.bool_) | |
tm.assert_numpy_array_equal(result, expected) | |