peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/plotting
/common.py
""" | |
Module consolidating common testing functions for checking plotting. | |
""" | |
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
import numpy as np | |
from pandas.core.dtypes.api import is_list_like | |
import pandas as pd | |
from pandas import Series | |
import pandas._testing as tm | |
if TYPE_CHECKING: | |
from collections.abc import Sequence | |
from matplotlib.axes import Axes | |
def _check_legend_labels(axes, labels=None, visible=True): | |
""" | |
Check each axes has expected legend labels | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
labels : list-like | |
expected legend labels | |
visible : bool | |
expected legend visibility. labels are checked only when visible is | |
True | |
""" | |
if visible and (labels is None): | |
raise ValueError("labels must be specified when visible is True") | |
axes = _flatten_visible(axes) | |
for ax in axes: | |
if visible: | |
assert ax.get_legend() is not None | |
_check_text_labels(ax.get_legend().get_texts(), labels) | |
else: | |
assert ax.get_legend() is None | |
def _check_legend_marker(ax, expected_markers=None, visible=True): | |
""" | |
Check ax has expected legend markers | |
Parameters | |
---------- | |
ax : matplotlib Axes object | |
expected_markers : list-like | |
expected legend markers | |
visible : bool | |
expected legend visibility. labels are checked only when visible is | |
True | |
""" | |
if visible and (expected_markers is None): | |
raise ValueError("Markers must be specified when visible is True") | |
if visible: | |
handles, _ = ax.get_legend_handles_labels() | |
markers = [handle.get_marker() for handle in handles] | |
assert markers == expected_markers | |
else: | |
assert ax.get_legend() is None | |
def _check_data(xp, rs): | |
""" | |
Check each axes has identical lines | |
Parameters | |
---------- | |
xp : matplotlib Axes object | |
rs : matplotlib Axes object | |
""" | |
import matplotlib.pyplot as plt | |
xp_lines = xp.get_lines() | |
rs_lines = rs.get_lines() | |
assert len(xp_lines) == len(rs_lines) | |
for xpl, rsl in zip(xp_lines, rs_lines): | |
xpdata = xpl.get_xydata() | |
rsdata = rsl.get_xydata() | |
tm.assert_almost_equal(xpdata, rsdata) | |
plt.close("all") | |
def _check_visible(collections, visible=True): | |
""" | |
Check each artist is visible or not | |
Parameters | |
---------- | |
collections : matplotlib Artist or its list-like | |
target Artist or its list or collection | |
visible : bool | |
expected visibility | |
""" | |
from matplotlib.collections import Collection | |
if not isinstance(collections, Collection) and not is_list_like(collections): | |
collections = [collections] | |
for patch in collections: | |
assert patch.get_visible() == visible | |
def _check_patches_all_filled(axes: Axes | Sequence[Axes], filled: bool = True) -> None: | |
""" | |
Check for each artist whether it is filled or not | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
filled : bool | |
expected filling | |
""" | |
axes = _flatten_visible(axes) | |
for ax in axes: | |
for patch in ax.patches: | |
assert patch.fill == filled | |
def _get_colors_mapped(series, colors): | |
unique = series.unique() | |
# unique and colors length can be differed | |
# depending on slice value | |
mapped = dict(zip(unique, colors)) | |
return [mapped[v] for v in series.values] | |
def _check_colors(collections, linecolors=None, facecolors=None, mapping=None): | |
""" | |
Check each artist has expected line colors and face colors | |
Parameters | |
---------- | |
collections : list-like | |
list or collection of target artist | |
linecolors : list-like which has the same length as collections | |
list of expected line colors | |
facecolors : list-like which has the same length as collections | |
list of expected face colors | |
mapping : Series | |
Series used for color grouping key | |
used for andrew_curves, parallel_coordinates, radviz test | |
""" | |
from matplotlib import colors | |
from matplotlib.collections import ( | |
Collection, | |
LineCollection, | |
PolyCollection, | |
) | |
from matplotlib.lines import Line2D | |
conv = colors.ColorConverter | |
if linecolors is not None: | |
if mapping is not None: | |
linecolors = _get_colors_mapped(mapping, linecolors) | |
linecolors = linecolors[: len(collections)] | |
assert len(collections) == len(linecolors) | |
for patch, color in zip(collections, linecolors): | |
if isinstance(patch, Line2D): | |
result = patch.get_color() | |
# Line2D may contains string color expression | |
result = conv.to_rgba(result) | |
elif isinstance(patch, (PolyCollection, LineCollection)): | |
result = tuple(patch.get_edgecolor()[0]) | |
else: | |
result = patch.get_edgecolor() | |
expected = conv.to_rgba(color) | |
assert result == expected | |
if facecolors is not None: | |
if mapping is not None: | |
facecolors = _get_colors_mapped(mapping, facecolors) | |
facecolors = facecolors[: len(collections)] | |
assert len(collections) == len(facecolors) | |
for patch, color in zip(collections, facecolors): | |
if isinstance(patch, Collection): | |
# returned as list of np.array | |
result = patch.get_facecolor()[0] | |
else: | |
result = patch.get_facecolor() | |
if isinstance(result, np.ndarray): | |
result = tuple(result) | |
expected = conv.to_rgba(color) | |
assert result == expected | |
def _check_text_labels(texts, expected): | |
""" | |
Check each text has expected labels | |
Parameters | |
---------- | |
texts : matplotlib Text object, or its list-like | |
target text, or its list | |
expected : str or list-like which has the same length as texts | |
expected text label, or its list | |
""" | |
if not is_list_like(texts): | |
assert texts.get_text() == expected | |
else: | |
labels = [t.get_text() for t in texts] | |
assert len(labels) == len(expected) | |
for label, e in zip(labels, expected): | |
assert label == e | |
def _check_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None): | |
""" | |
Check each axes has expected tick properties | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
xlabelsize : number | |
expected xticks font size | |
xrot : number | |
expected xticks rotation | |
ylabelsize : number | |
expected yticks font size | |
yrot : number | |
expected yticks rotation | |
""" | |
from matplotlib.ticker import NullFormatter | |
axes = _flatten_visible(axes) | |
for ax in axes: | |
if xlabelsize is not None or xrot is not None: | |
if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter): | |
# If minor ticks has NullFormatter, rot / fontsize are not | |
# retained | |
labels = ax.get_xticklabels() | |
else: | |
labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True) | |
for label in labels: | |
if xlabelsize is not None: | |
tm.assert_almost_equal(label.get_fontsize(), xlabelsize) | |
if xrot is not None: | |
tm.assert_almost_equal(label.get_rotation(), xrot) | |
if ylabelsize is not None or yrot is not None: | |
if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter): | |
labels = ax.get_yticklabels() | |
else: | |
labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True) | |
for label in labels: | |
if ylabelsize is not None: | |
tm.assert_almost_equal(label.get_fontsize(), ylabelsize) | |
if yrot is not None: | |
tm.assert_almost_equal(label.get_rotation(), yrot) | |
def _check_ax_scales(axes, xaxis="linear", yaxis="linear"): | |
""" | |
Check each axes has expected scales | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
xaxis : {'linear', 'log'} | |
expected xaxis scale | |
yaxis : {'linear', 'log'} | |
expected yaxis scale | |
""" | |
axes = _flatten_visible(axes) | |
for ax in axes: | |
assert ax.xaxis.get_scale() == xaxis | |
assert ax.yaxis.get_scale() == yaxis | |
def _check_axes_shape(axes, axes_num=None, layout=None, figsize=None): | |
""" | |
Check expected number of axes is drawn in expected layout | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
axes_num : number | |
expected number of axes. Unnecessary axes should be set to | |
invisible. | |
layout : tuple | |
expected layout, (expected number of rows , columns) | |
figsize : tuple | |
expected figsize. default is matplotlib default | |
""" | |
from pandas.plotting._matplotlib.tools import flatten_axes | |
if figsize is None: | |
figsize = (6.4, 4.8) | |
visible_axes = _flatten_visible(axes) | |
if axes_num is not None: | |
assert len(visible_axes) == axes_num | |
for ax in visible_axes: | |
# check something drawn on visible axes | |
assert len(ax.get_children()) > 0 | |
if layout is not None: | |
x_set = set() | |
y_set = set() | |
for ax in flatten_axes(axes): | |
# check axes coordinates to estimate layout | |
points = ax.get_position().get_points() | |
x_set.add(points[0][0]) | |
y_set.add(points[0][1]) | |
result = (len(y_set), len(x_set)) | |
assert result == layout | |
tm.assert_numpy_array_equal( | |
visible_axes[0].figure.get_size_inches(), | |
np.array(figsize, dtype=np.float64), | |
) | |
def _flatten_visible(axes: Axes | Sequence[Axes]) -> Sequence[Axes]: | |
""" | |
Flatten axes, and filter only visible | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
""" | |
from pandas.plotting._matplotlib.tools import flatten_axes | |
axes_ndarray = flatten_axes(axes) | |
axes = [ax for ax in axes_ndarray if ax.get_visible()] | |
return axes | |
def _check_has_errorbars(axes, xerr=0, yerr=0): | |
""" | |
Check axes has expected number of errorbars | |
Parameters | |
---------- | |
axes : matplotlib Axes object, or its list-like | |
xerr : number | |
expected number of x errorbar | |
yerr : number | |
expected number of y errorbar | |
""" | |
axes = _flatten_visible(axes) | |
for ax in axes: | |
containers = ax.containers | |
xerr_count = 0 | |
yerr_count = 0 | |
for c in containers: | |
has_xerr = getattr(c, "has_xerr", False) | |
has_yerr = getattr(c, "has_yerr", False) | |
if has_xerr: | |
xerr_count += 1 | |
if has_yerr: | |
yerr_count += 1 | |
assert xerr == xerr_count | |
assert yerr == yerr_count | |
def _check_box_return_type( | |
returned, return_type, expected_keys=None, check_ax_title=True | |
): | |
""" | |
Check box returned type is correct | |
Parameters | |
---------- | |
returned : object to be tested, returned from boxplot | |
return_type : str | |
return_type passed to boxplot | |
expected_keys : list-like, optional | |
group labels in subplot case. If not passed, | |
the function checks assuming boxplot uses single ax | |
check_ax_title : bool | |
Whether to check the ax.title is the same as expected_key | |
Intended to be checked by calling from ``boxplot``. | |
Normal ``plot`` doesn't attach ``ax.title``, it must be disabled. | |
""" | |
from matplotlib.axes import Axes | |
types = {"dict": dict, "axes": Axes, "both": tuple} | |
if expected_keys is None: | |
# should be fixed when the returning default is changed | |
if return_type is None: | |
return_type = "dict" | |
assert isinstance(returned, types[return_type]) | |
if return_type == "both": | |
assert isinstance(returned.ax, Axes) | |
assert isinstance(returned.lines, dict) | |
else: | |
# should be fixed when the returning default is changed | |
if return_type is None: | |
for r in _flatten_visible(returned): | |
assert isinstance(r, Axes) | |
return | |
assert isinstance(returned, Series) | |
assert sorted(returned.keys()) == sorted(expected_keys) | |
for key, value in returned.items(): | |
assert isinstance(value, types[return_type]) | |
# check returned dict has correct mapping | |
if return_type == "axes": | |
if check_ax_title: | |
assert value.get_title() == key | |
elif return_type == "both": | |
if check_ax_title: | |
assert value.ax.get_title() == key | |
assert isinstance(value.ax, Axes) | |
assert isinstance(value.lines, dict) | |
elif return_type == "dict": | |
line = value["medians"][0] | |
axes = line.axes | |
if check_ax_title: | |
assert axes.get_title() == key | |
else: | |
raise AssertionError | |
def _check_grid_settings(obj, kinds, kws={}): | |
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 | |
import matplotlib as mpl | |
def is_grid_on(): | |
xticks = mpl.pyplot.gca().xaxis.get_major_ticks() | |
yticks = mpl.pyplot.gca().yaxis.get_major_ticks() | |
xoff = all(not g.gridline.get_visible() for g in xticks) | |
yoff = all(not g.gridline.get_visible() for g in yticks) | |
return not (xoff and yoff) | |
spndx = 1 | |
for kind in kinds: | |
mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | |
spndx += 1 | |
mpl.rc("axes", grid=False) | |
obj.plot(kind=kind, **kws) | |
assert not is_grid_on() | |
mpl.pyplot.clf() | |
mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | |
spndx += 1 | |
mpl.rc("axes", grid=True) | |
obj.plot(kind=kind, grid=False, **kws) | |
assert not is_grid_on() | |
mpl.pyplot.clf() | |
if kind not in ["pie", "hexbin", "scatter"]: | |
mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | |
spndx += 1 | |
mpl.rc("axes", grid=True) | |
obj.plot(kind=kind, **kws) | |
assert is_grid_on() | |
mpl.pyplot.clf() | |
mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | |
spndx += 1 | |
mpl.rc("axes", grid=False) | |
obj.plot(kind=kind, grid=True, **kws) | |
assert is_grid_on() | |
mpl.pyplot.clf() | |
def _unpack_cycler(rcParams, field="color"): | |
""" | |
Auxiliary function for correctly unpacking cycler after MPL >= 1.5 | |
""" | |
return [v[field] for v in rcParams["axes.prop_cycle"]] | |
def get_x_axis(ax): | |
return ax._shared_axes["x"] | |
def get_y_axis(ax): | |
return ax._shared_axes["y"] | |
def _check_plot_works(f, default_axes=False, **kwargs): | |
""" | |
Create plot and ensure that plot return object is valid. | |
Parameters | |
---------- | |
f : func | |
Plotting function. | |
default_axes : bool, optional | |
If False (default): | |
- If `ax` not in `kwargs`, then create subplot(211) and plot there | |
- Create new subplot(212) and plot there as well | |
- Mind special corner case for bootstrap_plot (see `_gen_two_subplots`) | |
If True: | |
- Simply run plotting function with kwargs provided | |
- All required axes instances will be created automatically | |
- It is recommended to use it when the plotting function | |
creates multiple axes itself. It helps avoid warnings like | |
'UserWarning: To output multiple subplots, | |
the figure containing the passed axes is being cleared' | |
**kwargs | |
Keyword arguments passed to the plotting function. | |
Returns | |
------- | |
Plot object returned by the last plotting. | |
""" | |
import matplotlib.pyplot as plt | |
if default_axes: | |
gen_plots = _gen_default_plot | |
else: | |
gen_plots = _gen_two_subplots | |
ret = None | |
try: | |
fig = kwargs.get("figure", plt.gcf()) | |
plt.clf() | |
for ret in gen_plots(f, fig, **kwargs): | |
tm.assert_is_valid_plot_return_object(ret) | |
finally: | |
plt.close(fig) | |
return ret | |
def _gen_default_plot(f, fig, **kwargs): | |
""" | |
Create plot in a default way. | |
""" | |
yield f(**kwargs) | |
def _gen_two_subplots(f, fig, **kwargs): | |
""" | |
Create plot on two subplots forcefully created. | |
""" | |
if "ax" not in kwargs: | |
fig.add_subplot(211) | |
yield f(**kwargs) | |
if f is pd.plotting.bootstrap_plot: | |
assert "ax" not in kwargs | |
else: | |
kwargs["ax"] = fig.add_subplot(212) | |
yield f(**kwargs) | |