peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/plotting
/test_groupby.py
""" Test cases for GroupBy.plot """ | |
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
) | |
from pandas.tests.plotting.common import ( | |
_check_axes_shape, | |
_check_legend_labels, | |
) | |
pytest.importorskip("matplotlib") | |
class TestDataFrameGroupByPlots: | |
def test_series_groupby_plotting_nominally_works(self): | |
n = 10 | |
weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) | |
gender = np.random.default_rng(2).choice(["male", "female"], size=n) | |
weight.groupby(gender).plot() | |
def test_series_groupby_plotting_nominally_works_hist(self): | |
n = 10 | |
height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | |
gender = np.random.default_rng(2).choice(["male", "female"], size=n) | |
height.groupby(gender).hist() | |
def test_series_groupby_plotting_nominally_works_alpha(self): | |
n = 10 | |
height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | |
gender = np.random.default_rng(2).choice(["male", "female"], size=n) | |
# Regression test for GH8733 | |
height.groupby(gender).plot(alpha=0.5) | |
def test_plotting_with_float_index_works(self): | |
# GH 7025 | |
df = DataFrame( | |
{ | |
"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], | |
"val": np.random.default_rng(2).standard_normal(9), | |
}, | |
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], | |
) | |
df.groupby("def")["val"].plot() | |
def test_plotting_with_float_index_works_apply(self): | |
# GH 7025 | |
df = DataFrame( | |
{ | |
"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], | |
"val": np.random.default_rng(2).standard_normal(9), | |
}, | |
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], | |
) | |
df.groupby("def")["val"].apply(lambda x: x.plot()) | |
def test_hist_single_row(self): | |
# GH10214 | |
bins = np.arange(80, 100 + 2, 1) | |
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) | |
df["Mark"].hist(by=df["ByCol"], bins=bins) | |
def test_hist_single_row_single_bycol(self): | |
# GH10214 | |
bins = np.arange(80, 100 + 2, 1) | |
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) | |
df["Mark"].hist(by=df["ByCol"], bins=bins) | |
def test_plot_submethod_works(self): | |
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | |
df.groupby("z").plot.scatter("x", "y") | |
def test_plot_submethod_works_line(self): | |
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | |
df.groupby("z")["x"].plot.line() | |
def test_plot_kwargs(self): | |
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | |
res = df.groupby("z").plot(kind="scatter", x="x", y="y") | |
# check that a scatter plot is effectively plotted: the axes should | |
# contain a PathCollection from the scatter plot (GH11805) | |
assert len(res["a"].collections) == 1 | |
def test_plot_kwargs_scatter(self): | |
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | |
res = df.groupby("z").plot.scatter(x="x", y="y") | |
assert len(res["a"].collections) == 1 | |
def test_groupby_hist_frame_with_legend(self, column, expected_axes_num): | |
# GH 6279 - DataFrameGroupBy histogram can have a legend | |
expected_layout = (1, expected_axes_num) | |
expected_labels = column or [["a"], ["b"]] | |
index = Index(15 * ["1"] + 15 * ["2"], name="c") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 2)), | |
index=index, | |
columns=["a", "b"], | |
) | |
g = df.groupby("c") | |
for axes in g.hist(legend=True, column=column): | |
_check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) | |
for ax, expected_label in zip(axes[0], expected_labels): | |
_check_legend_labels(ax, expected_label) | |
def test_groupby_hist_frame_with_legend_raises(self, column): | |
# GH 6279 - DataFrameGroupBy histogram with legend and label raises | |
index = Index(15 * ["1"] + 15 * ["2"], name="c") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 2)), | |
index=index, | |
columns=["a", "b"], | |
) | |
g = df.groupby("c") | |
with pytest.raises(ValueError, match="Cannot use both legend and label"): | |
g.hist(legend=True, column=column, label="d") | |
def test_groupby_hist_series_with_legend(self): | |
# GH 6279 - SeriesGroupBy histogram can have a legend | |
index = Index(15 * ["1"] + 15 * ["2"], name="c") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 2)), | |
index=index, | |
columns=["a", "b"], | |
) | |
g = df.groupby("c") | |
for ax in g["a"].hist(legend=True): | |
_check_axes_shape(ax, axes_num=1, layout=(1, 1)) | |
_check_legend_labels(ax, ["1", "2"]) | |
def test_groupby_hist_series_with_legend_raises(self): | |
# GH 6279 - SeriesGroupBy histogram with legend and label raises | |
index = Index(15 * ["1"] + 15 * ["2"], name="c") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((30, 2)), | |
index=index, | |
columns=["a", "b"], | |
) | |
g = df.groupby("c") | |
with pytest.raises(ValueError, match="Cannot use both legend and label"): | |
g.hist(legend=True, label="d") | |