peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/reshape
/test_crosstab.py
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
CategoricalDtype, | |
CategoricalIndex, | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
crosstab, | |
) | |
import pandas._testing as tm | |
def df(): | |
df = DataFrame( | |
{ | |
"A": [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
"foo", | |
"foo", | |
"foo", | |
], | |
"B": [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"two", | |
"one", | |
], | |
"C": [ | |
"dull", | |
"dull", | |
"shiny", | |
"dull", | |
"dull", | |
"shiny", | |
"shiny", | |
"dull", | |
"shiny", | |
"shiny", | |
"shiny", | |
], | |
"D": np.random.default_rng(2).standard_normal(11), | |
"E": np.random.default_rng(2).standard_normal(11), | |
"F": np.random.default_rng(2).standard_normal(11), | |
} | |
) | |
return pd.concat([df, df], ignore_index=True) | |
class TestCrosstab: | |
def test_crosstab_single(self, df): | |
result = crosstab(df["A"], df["C"]) | |
expected = df.groupby(["A", "C"]).size().unstack() | |
tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64)) | |
def test_crosstab_multiple(self, df): | |
result = crosstab(df["A"], [df["B"], df["C"]]) | |
expected = df.groupby(["A", "B", "C"]).size() | |
expected = expected.unstack("B").unstack("C").fillna(0).astype(np.int64) | |
tm.assert_frame_equal(result, expected) | |
result = crosstab([df["B"], df["C"]], df["A"]) | |
expected = df.groupby(["B", "C", "A"]).size() | |
expected = expected.unstack("A").fillna(0).astype(np.int64) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_ndarray(self, box): | |
# GH 44076 | |
a = box(np.random.default_rng(2).integers(0, 5, size=100)) | |
b = box(np.random.default_rng(2).integers(0, 3, size=100)) | |
c = box(np.random.default_rng(2).integers(0, 10, size=100)) | |
df = DataFrame({"a": a, "b": b, "c": c}) | |
result = crosstab(a, [b, c], rownames=["a"], colnames=("b", "c")) | |
expected = crosstab(df["a"], [df["b"], df["c"]]) | |
tm.assert_frame_equal(result, expected) | |
result = crosstab([b, c], a, colnames=["a"], rownames=("b", "c")) | |
expected = crosstab([df["b"], df["c"]], df["a"]) | |
tm.assert_frame_equal(result, expected) | |
# assign arbitrary names | |
result = crosstab(a, c) | |
expected = crosstab(df["a"], df["c"]) | |
expected.index.names = ["row_0"] | |
expected.columns.names = ["col_0"] | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_non_aligned(self): | |
# GH 17005 | |
a = Series([0, 1, 1], index=["a", "b", "c"]) | |
b = Series([3, 4, 3, 4, 3], index=["a", "b", "c", "d", "f"]) | |
c = np.array([3, 4, 3], dtype=np.int64) | |
expected = DataFrame( | |
[[1, 0], [1, 1]], | |
index=Index([0, 1], name="row_0"), | |
columns=Index([3, 4], name="col_0"), | |
) | |
result = crosstab(a, b) | |
tm.assert_frame_equal(result, expected) | |
result = crosstab(a, c) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_margins(self): | |
a = np.random.default_rng(2).integers(0, 7, size=100) | |
b = np.random.default_rng(2).integers(0, 3, size=100) | |
c = np.random.default_rng(2).integers(0, 5, size=100) | |
df = DataFrame({"a": a, "b": b, "c": c}) | |
result = crosstab(a, [b, c], rownames=["a"], colnames=("b", "c"), margins=True) | |
assert result.index.names == ("a",) | |
assert result.columns.names == ["b", "c"] | |
all_cols = result["All", ""] | |
exp_cols = df.groupby(["a"]).size().astype("i8") | |
# to keep index.name | |
exp_margin = Series([len(df)], index=Index(["All"], name="a")) | |
exp_cols = pd.concat([exp_cols, exp_margin]) | |
exp_cols.name = ("All", "") | |
tm.assert_series_equal(all_cols, exp_cols) | |
all_rows = result.loc["All"] | |
exp_rows = df.groupby(["b", "c"]).size().astype("i8") | |
exp_rows = pd.concat([exp_rows, Series([len(df)], index=[("All", "")])]) | |
exp_rows.name = "All" | |
exp_rows = exp_rows.reindex(all_rows.index) | |
exp_rows = exp_rows.fillna(0).astype(np.int64) | |
tm.assert_series_equal(all_rows, exp_rows) | |
def test_crosstab_margins_set_margin_name(self): | |
# GH 15972 | |
a = np.random.default_rng(2).integers(0, 7, size=100) | |
b = np.random.default_rng(2).integers(0, 3, size=100) | |
c = np.random.default_rng(2).integers(0, 5, size=100) | |
df = DataFrame({"a": a, "b": b, "c": c}) | |
result = crosstab( | |
a, | |
[b, c], | |
rownames=["a"], | |
colnames=("b", "c"), | |
margins=True, | |
margins_name="TOTAL", | |
) | |
assert result.index.names == ("a",) | |
assert result.columns.names == ["b", "c"] | |
all_cols = result["TOTAL", ""] | |
exp_cols = df.groupby(["a"]).size().astype("i8") | |
# to keep index.name | |
exp_margin = Series([len(df)], index=Index(["TOTAL"], name="a")) | |
exp_cols = pd.concat([exp_cols, exp_margin]) | |
exp_cols.name = ("TOTAL", "") | |
tm.assert_series_equal(all_cols, exp_cols) | |
all_rows = result.loc["TOTAL"] | |
exp_rows = df.groupby(["b", "c"]).size().astype("i8") | |
exp_rows = pd.concat([exp_rows, Series([len(df)], index=[("TOTAL", "")])]) | |
exp_rows.name = "TOTAL" | |
exp_rows = exp_rows.reindex(all_rows.index) | |
exp_rows = exp_rows.fillna(0).astype(np.int64) | |
tm.assert_series_equal(all_rows, exp_rows) | |
msg = "margins_name argument must be a string" | |
for margins_name in [666, None, ["a", "b"]]: | |
with pytest.raises(ValueError, match=msg): | |
crosstab( | |
a, | |
[b, c], | |
rownames=["a"], | |
colnames=("b", "c"), | |
margins=True, | |
margins_name=margins_name, | |
) | |
def test_crosstab_pass_values(self): | |
a = np.random.default_rng(2).integers(0, 7, size=100) | |
b = np.random.default_rng(2).integers(0, 3, size=100) | |
c = np.random.default_rng(2).integers(0, 5, size=100) | |
values = np.random.default_rng(2).standard_normal(100) | |
table = crosstab( | |
[a, b], c, values, aggfunc="sum", rownames=["foo", "bar"], colnames=["baz"] | |
) | |
df = DataFrame({"foo": a, "bar": b, "baz": c, "values": values}) | |
expected = df.pivot_table( | |
"values", index=["foo", "bar"], columns="baz", aggfunc="sum" | |
) | |
tm.assert_frame_equal(table, expected) | |
def test_crosstab_dropna(self): | |
# GH 3820 | |
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object) | |
b = np.array(["one", "one", "two", "one", "two", "two", "two"], dtype=object) | |
c = np.array( | |
["dull", "dull", "dull", "dull", "dull", "shiny", "shiny"], dtype=object | |
) | |
res = crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"], dropna=False) | |
m = MultiIndex.from_tuples( | |
[("one", "dull"), ("one", "shiny"), ("two", "dull"), ("two", "shiny")], | |
names=["b", "c"], | |
) | |
tm.assert_index_equal(res.columns, m) | |
def test_crosstab_no_overlap(self): | |
# GS 10291 | |
s1 = Series([1, 2, 3], index=[1, 2, 3]) | |
s2 = Series([4, 5, 6], index=[4, 5, 6]) | |
actual = crosstab(s1, s2) | |
expected = DataFrame( | |
index=Index([], dtype="int64", name="row_0"), | |
columns=Index([], dtype="int64", name="col_0"), | |
) | |
tm.assert_frame_equal(actual, expected) | |
def test_margin_dropna(self): | |
# GH 12577 | |
# pivot_table counts null into margin ('All') | |
# when margins=true and dropna=true | |
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]}) | |
actual = crosstab(df.a, df.b, margins=True, dropna=True) | |
expected = DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]]) | |
expected.index = Index([1.0, 2.0, "All"], name="a") | |
expected.columns = Index([3, 4, "All"], name="b") | |
tm.assert_frame_equal(actual, expected) | |
def test_margin_dropna2(self): | |
df = DataFrame( | |
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]} | |
) | |
actual = crosstab(df.a, df.b, margins=True, dropna=True) | |
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) | |
expected.index = Index([1.0, 2.0, "All"], name="a") | |
expected.columns = Index([3.0, 4.0, "All"], name="b") | |
tm.assert_frame_equal(actual, expected) | |
def test_margin_dropna3(self): | |
df = DataFrame( | |
{"a": [1, np.nan, np.nan, np.nan, np.nan, 2], "b": [3, 3, 4, 4, 4, 4]} | |
) | |
actual = crosstab(df.a, df.b, margins=True, dropna=True) | |
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) | |
expected.index = Index([1.0, 2.0, "All"], name="a") | |
expected.columns = Index([3, 4, "All"], name="b") | |
tm.assert_frame_equal(actual, expected) | |
def test_margin_dropna4(self): | |
# GH 12642 | |
# _add_margins raises KeyError: Level None not found | |
# when margins=True and dropna=False | |
# GH: 10772: Keep np.nan in result with dropna=False | |
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]}) | |
actual = crosstab(df.a, df.b, margins=True, dropna=False) | |
expected = DataFrame([[1, 0, 1.0], [1, 3, 4.0], [0, 1, np.nan], [2, 4, 6.0]]) | |
expected.index = Index([1.0, 2.0, np.nan, "All"], name="a") | |
expected.columns = Index([3, 4, "All"], name="b") | |
tm.assert_frame_equal(actual, expected) | |
def test_margin_dropna5(self): | |
# GH: 10772: Keep np.nan in result with dropna=False | |
df = DataFrame( | |
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]} | |
) | |
actual = crosstab(df.a, df.b, margins=True, dropna=False) | |
expected = DataFrame( | |
[[1, 0, 0, 1.0], [0, 1, 0, 1.0], [0, 3, 1, np.nan], [1, 4, 0, 6.0]] | |
) | |
expected.index = Index([1.0, 2.0, np.nan, "All"], name="a") | |
expected.columns = Index([3.0, 4.0, np.nan, "All"], name="b") | |
tm.assert_frame_equal(actual, expected) | |
def test_margin_dropna6(self): | |
# GH: 10772: Keep np.nan in result with dropna=False | |
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object) | |
b = np.array(["one", "one", "two", "one", "two", np.nan, "two"], dtype=object) | |
c = np.array( | |
["dull", "dull", "dull", "dull", "dull", "shiny", "shiny"], dtype=object | |
) | |
actual = crosstab( | |
a, [b, c], rownames=["a"], colnames=["b", "c"], margins=True, dropna=False | |
) | |
m = MultiIndex.from_arrays( | |
[ | |
["one", "one", "two", "two", np.nan, np.nan, "All"], | |
["dull", "shiny", "dull", "shiny", "dull", "shiny", ""], | |
], | |
names=["b", "c"], | |
) | |
expected = DataFrame( | |
[[1, 0, 1, 0, 0, 0, 2], [2, 0, 1, 1, 0, 1, 5], [3, 0, 2, 1, 0, 0, 7]], | |
columns=m, | |
) | |
expected.index = Index(["bar", "foo", "All"], name="a") | |
tm.assert_frame_equal(actual, expected) | |
actual = crosstab( | |
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=False | |
) | |
m = MultiIndex.from_arrays( | |
[ | |
["bar", "bar", "bar", "foo", "foo", "foo", "All"], | |
["one", "two", np.nan, "one", "two", np.nan, ""], | |
], | |
names=["a", "b"], | |
) | |
expected = DataFrame( | |
[ | |
[1, 0, 1.0], | |
[1, 0, 1.0], | |
[0, 0, np.nan], | |
[2, 0, 2.0], | |
[1, 1, 2.0], | |
[0, 1, np.nan], | |
[5, 2, 7.0], | |
], | |
index=m, | |
) | |
expected.columns = Index(["dull", "shiny", "All"], name="c") | |
tm.assert_frame_equal(actual, expected) | |
actual = crosstab( | |
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=True | |
) | |
m = MultiIndex.from_arrays( | |
[["bar", "bar", "foo", "foo", "All"], ["one", "two", "one", "two", ""]], | |
names=["a", "b"], | |
) | |
expected = DataFrame( | |
[[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 1, 6]], index=m | |
) | |
expected.columns = Index(["dull", "shiny", "All"], name="c") | |
tm.assert_frame_equal(actual, expected) | |
def test_crosstab_normalize(self): | |
# Issue 12578 | |
df = DataFrame( | |
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]} | |
) | |
rindex = Index([1, 2], name="a") | |
cindex = Index([3, 4], name="b") | |
full_normal = DataFrame([[0.2, 0], [0.2, 0.6]], index=rindex, columns=cindex) | |
row_normal = DataFrame([[1.0, 0], [0.25, 0.75]], index=rindex, columns=cindex) | |
col_normal = DataFrame([[0.5, 0], [0.5, 1.0]], index=rindex, columns=cindex) | |
# Check all normalize args | |
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="all"), full_normal) | |
tm.assert_frame_equal(crosstab(df.a, df.b, normalize=True), full_normal) | |
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="index"), row_normal) | |
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="columns"), col_normal) | |
tm.assert_frame_equal( | |
crosstab(df.a, df.b, normalize=1), | |
crosstab(df.a, df.b, normalize="columns"), | |
) | |
tm.assert_frame_equal( | |
crosstab(df.a, df.b, normalize=0), crosstab(df.a, df.b, normalize="index") | |
) | |
row_normal_margins = DataFrame( | |
[[1.0, 0], [0.25, 0.75], [0.4, 0.6]], | |
index=Index([1, 2, "All"], name="a", dtype="object"), | |
columns=Index([3, 4], name="b", dtype="object"), | |
) | |
col_normal_margins = DataFrame( | |
[[0.5, 0, 0.2], [0.5, 1.0, 0.8]], | |
index=Index([1, 2], name="a", dtype="object"), | |
columns=Index([3, 4, "All"], name="b", dtype="object"), | |
) | |
all_normal_margins = DataFrame( | |
[[0.2, 0, 0.2], [0.2, 0.6, 0.8], [0.4, 0.6, 1]], | |
index=Index([1, 2, "All"], name="a", dtype="object"), | |
columns=Index([3, 4, "All"], name="b", dtype="object"), | |
) | |
tm.assert_frame_equal( | |
crosstab(df.a, df.b, normalize="index", margins=True), row_normal_margins | |
) | |
tm.assert_frame_equal( | |
crosstab(df.a, df.b, normalize="columns", margins=True), col_normal_margins | |
) | |
tm.assert_frame_equal( | |
crosstab(df.a, df.b, normalize=True, margins=True), all_normal_margins | |
) | |
def test_crosstab_normalize_arrays(self): | |
# GH#12578 | |
df = DataFrame( | |
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]} | |
) | |
# Test arrays | |
crosstab( | |
[np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])], np.array([1, 2, 1, 2]) | |
) | |
# Test with aggfunc | |
norm_counts = DataFrame( | |
[[0.25, 0, 0.25], [0.25, 0.5, 0.75], [0.5, 0.5, 1]], | |
index=Index([1, 2, "All"], name="a", dtype="object"), | |
columns=Index([3, 4, "All"], name="b"), | |
) | |
test_case = crosstab( | |
df.a, df.b, df.c, aggfunc="count", normalize="all", margins=True | |
) | |
tm.assert_frame_equal(test_case, norm_counts) | |
df = DataFrame( | |
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [0, 4, np.nan, 3, 3]} | |
) | |
norm_sum = DataFrame( | |
[[0, 0, 0.0], [0.4, 0.6, 1], [0.4, 0.6, 1]], | |
index=Index([1, 2, "All"], name="a", dtype="object"), | |
columns=Index([3, 4, "All"], name="b", dtype="object"), | |
) | |
msg = "using DataFrameGroupBy.sum" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
test_case = crosstab( | |
df.a, df.b, df.c, aggfunc=np.sum, normalize="all", margins=True | |
) | |
tm.assert_frame_equal(test_case, norm_sum) | |
def test_crosstab_with_empties(self, using_array_manager): | |
# Check handling of empties | |
df = DataFrame( | |
{ | |
"a": [1, 2, 2, 2, 2], | |
"b": [3, 3, 4, 4, 4], | |
"c": [np.nan, np.nan, np.nan, np.nan, np.nan], | |
} | |
) | |
empty = DataFrame( | |
[[0.0, 0.0], [0.0, 0.0]], | |
index=Index([1, 2], name="a", dtype="int64"), | |
columns=Index([3, 4], name="b"), | |
) | |
for i in [True, "index", "columns"]: | |
calculated = crosstab(df.a, df.b, values=df.c, aggfunc="count", normalize=i) | |
tm.assert_frame_equal(empty, calculated) | |
nans = DataFrame( | |
[[0.0, np.nan], [0.0, 0.0]], | |
index=Index([1, 2], name="a", dtype="int64"), | |
columns=Index([3, 4], name="b"), | |
) | |
if using_array_manager: | |
# INFO(ArrayManager) column without NaNs can preserve int dtype | |
nans[3] = nans[3].astype("int64") | |
calculated = crosstab(df.a, df.b, values=df.c, aggfunc="count", normalize=False) | |
tm.assert_frame_equal(nans, calculated) | |
def test_crosstab_errors(self): | |
# Issue 12578 | |
df = DataFrame( | |
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]} | |
) | |
error = "values cannot be used without an aggfunc." | |
with pytest.raises(ValueError, match=error): | |
crosstab(df.a, df.b, values=df.c) | |
error = "aggfunc cannot be used without values" | |
with pytest.raises(ValueError, match=error): | |
crosstab(df.a, df.b, aggfunc=np.mean) | |
error = "Not a valid normalize argument" | |
with pytest.raises(ValueError, match=error): | |
crosstab(df.a, df.b, normalize="42") | |
with pytest.raises(ValueError, match=error): | |
crosstab(df.a, df.b, normalize=42) | |
error = "Not a valid margins argument" | |
with pytest.raises(ValueError, match=error): | |
crosstab(df.a, df.b, normalize="all", margins=42) | |
def test_crosstab_with_categorial_columns(self): | |
# GH 8860 | |
df = DataFrame( | |
{ | |
"MAKE": ["Honda", "Acura", "Tesla", "Honda", "Honda", "Acura"], | |
"MODEL": ["Sedan", "Sedan", "Electric", "Pickup", "Sedan", "Sedan"], | |
} | |
) | |
categories = ["Sedan", "Electric", "Pickup"] | |
df["MODEL"] = df["MODEL"].astype("category").cat.set_categories(categories) | |
result = crosstab(df["MAKE"], df["MODEL"]) | |
expected_index = Index(["Acura", "Honda", "Tesla"], name="MAKE") | |
expected_columns = CategoricalIndex( | |
categories, categories=categories, ordered=False, name="MODEL" | |
) | |
expected_data = [[2, 0, 0], [2, 0, 1], [0, 1, 0]] | |
expected = DataFrame( | |
expected_data, index=expected_index, columns=expected_columns | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_with_numpy_size(self): | |
# GH 4003 | |
df = DataFrame( | |
{ | |
"A": ["one", "one", "two", "three"] * 6, | |
"B": ["A", "B", "C"] * 8, | |
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4, | |
"D": np.random.default_rng(2).standard_normal(24), | |
"E": np.random.default_rng(2).standard_normal(24), | |
} | |
) | |
result = crosstab( | |
index=[df["A"], df["B"]], | |
columns=[df["C"]], | |
margins=True, | |
aggfunc=np.size, | |
values=df["D"], | |
) | |
expected_index = MultiIndex( | |
levels=[["All", "one", "three", "two"], ["", "A", "B", "C"]], | |
codes=[[1, 1, 1, 2, 2, 2, 3, 3, 3, 0], [1, 2, 3, 1, 2, 3, 1, 2, 3, 0]], | |
names=["A", "B"], | |
) | |
expected_column = Index(["bar", "foo", "All"], name="C") | |
expected_data = np.array( | |
[ | |
[2.0, 2.0, 4.0], | |
[2.0, 2.0, 4.0], | |
[2.0, 2.0, 4.0], | |
[2.0, np.nan, 2.0], | |
[np.nan, 2.0, 2.0], | |
[2.0, np.nan, 2.0], | |
[np.nan, 2.0, 2.0], | |
[2.0, np.nan, 2.0], | |
[np.nan, 2.0, 2.0], | |
[12.0, 12.0, 24.0], | |
] | |
) | |
expected = DataFrame( | |
expected_data, index=expected_index, columns=expected_column | |
) | |
# aggfunc is np.size, resulting in integers | |
expected["All"] = expected["All"].astype("int64") | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_duplicate_names(self): | |
# GH 13279 / 22529 | |
s1 = Series(range(3), name="foo") | |
s2_foo = Series(range(1, 4), name="foo") | |
s2_bar = Series(range(1, 4), name="bar") | |
s3 = Series(range(3), name="waldo") | |
# check result computed with duplicate labels against | |
# result computed with unique labels, then relabelled | |
mapper = {"bar": "foo"} | |
# duplicate row, column labels | |
result = crosstab(s1, s2_foo) | |
expected = crosstab(s1, s2_bar).rename_axis(columns=mapper, axis=1) | |
tm.assert_frame_equal(result, expected) | |
# duplicate row, unique column labels | |
result = crosstab([s1, s2_foo], s3) | |
expected = crosstab([s1, s2_bar], s3).rename_axis(index=mapper, axis=0) | |
tm.assert_frame_equal(result, expected) | |
# unique row, duplicate column labels | |
result = crosstab(s3, [s1, s2_foo]) | |
expected = crosstab(s3, [s1, s2_bar]).rename_axis(columns=mapper, axis=1) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_tuple_name(self, names): | |
s1 = Series(range(3), name=names[0]) | |
s2 = Series(range(1, 4), name=names[1]) | |
mi = MultiIndex.from_arrays([range(3), range(1, 4)], names=names) | |
expected = Series(1, index=mi).unstack(1, fill_value=0) | |
result = crosstab(s1, s2) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_both_tuple_names(self): | |
# GH 18321 | |
s1 = Series(range(3), name=("a", "b")) | |
s2 = Series(range(3), name=("c", "d")) | |
expected = DataFrame( | |
np.eye(3, dtype="int64"), | |
index=Index(range(3), name=("a", "b")), | |
columns=Index(range(3), name=("c", "d")), | |
) | |
result = crosstab(s1, s2) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_unsorted_order(self): | |
df = DataFrame({"b": [3, 1, 2], "a": [5, 4, 6]}, index=["C", "A", "B"]) | |
result = crosstab(df.index, [df.b, df.a]) | |
e_idx = Index(["A", "B", "C"], name="row_0") | |
e_columns = MultiIndex.from_tuples([(1, 4), (2, 6), (3, 5)], names=["b", "a"]) | |
expected = DataFrame( | |
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], index=e_idx, columns=e_columns | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_crosstab_normalize_multiple_columns(self): | |
# GH 15150 | |
df = DataFrame( | |
{ | |
"A": ["one", "one", "two", "three"] * 6, | |
"B": ["A", "B", "C"] * 8, | |
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4, | |
"D": [0] * 24, | |
"E": [0] * 24, | |
} | |
) | |
msg = "using DataFrameGroupBy.sum" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = crosstab( | |
[df.A, df.B], | |
df.C, | |
values=df.D, | |
aggfunc=np.sum, | |
normalize=True, | |
margins=True, | |
) | |
expected = DataFrame( | |
np.array([0] * 29 + [1], dtype=float).reshape(10, 3), | |
columns=Index(["bar", "foo", "All"], name="C"), | |
index=MultiIndex.from_tuples( | |
[ | |
("one", "A"), | |
("one", "B"), | |
("one", "C"), | |
("three", "A"), | |
("three", "B"), | |
("three", "C"), | |
("two", "A"), | |
("two", "B"), | |
("two", "C"), | |
("All", ""), | |
], | |
names=["A", "B"], | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_margin_normalize(self): | |
# GH 27500 | |
df = DataFrame( | |
{ | |
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], | |
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], | |
"C": [ | |
"small", | |
"large", | |
"large", | |
"small", | |
"small", | |
"large", | |
"small", | |
"small", | |
"large", | |
], | |
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7], | |
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9], | |
} | |
) | |
# normalize on index | |
result = crosstab( | |
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=0 | |
) | |
expected = DataFrame( | |
[[0.5, 0.5], [0.5, 0.5], [0.666667, 0.333333], [0, 1], [0.444444, 0.555556]] | |
) | |
expected.index = MultiIndex( | |
levels=[["Sub-Total", "bar", "foo"], ["", "one", "two"]], | |
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]], | |
names=["A", "B"], | |
) | |
expected.columns = Index(["large", "small"], name="C") | |
tm.assert_frame_equal(result, expected) | |
# normalize on columns | |
result = crosstab( | |
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=1 | |
) | |
expected = DataFrame( | |
[ | |
[0.25, 0.2, 0.222222], | |
[0.25, 0.2, 0.222222], | |
[0.5, 0.2, 0.333333], | |
[0, 0.4, 0.222222], | |
] | |
) | |
expected.columns = Index(["large", "small", "Sub-Total"], name="C") | |
expected.index = MultiIndex( | |
levels=[["bar", "foo"], ["one", "two"]], | |
codes=[[0, 0, 1, 1], [0, 1, 0, 1]], | |
names=["A", "B"], | |
) | |
tm.assert_frame_equal(result, expected) | |
# normalize on both index and column | |
result = crosstab( | |
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=True | |
) | |
expected = DataFrame( | |
[ | |
[0.111111, 0.111111, 0.222222], | |
[0.111111, 0.111111, 0.222222], | |
[0.222222, 0.111111, 0.333333], | |
[0.000000, 0.222222, 0.222222], | |
[0.444444, 0.555555, 1], | |
] | |
) | |
expected.columns = Index(["large", "small", "Sub-Total"], name="C") | |
expected.index = MultiIndex( | |
levels=[["Sub-Total", "bar", "foo"], ["", "one", "two"]], | |
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]], | |
names=["A", "B"], | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_margin_normalize_multiple_columns(self): | |
# GH 35144 | |
# use multiple columns with margins and normalization | |
df = DataFrame( | |
{ | |
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], | |
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], | |
"C": [ | |
"small", | |
"large", | |
"large", | |
"small", | |
"small", | |
"large", | |
"small", | |
"small", | |
"large", | |
], | |
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7], | |
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9], | |
} | |
) | |
result = crosstab( | |
index=df.C, | |
columns=[df.A, df.B], | |
margins=True, | |
margins_name="margin", | |
normalize=True, | |
) | |
expected = DataFrame( | |
[ | |
[0.111111, 0.111111, 0.222222, 0.000000, 0.444444], | |
[0.111111, 0.111111, 0.111111, 0.222222, 0.555556], | |
[0.222222, 0.222222, 0.333333, 0.222222, 1.0], | |
], | |
index=["large", "small", "margin"], | |
) | |
expected.columns = MultiIndex( | |
levels=[["bar", "foo", "margin"], ["", "one", "two"]], | |
codes=[[0, 0, 1, 1, 2], [1, 2, 1, 2, 0]], | |
names=["A", "B"], | |
) | |
expected.index.name = "C" | |
tm.assert_frame_equal(result, expected) | |
def test_margin_support_Float(self): | |
# GH 50313 | |
# use Float64 formats and function aggfunc with margins | |
df = DataFrame( | |
{"A": [1, 2, 2, 1], "B": [3, 3, 4, 5], "C": [-1.0, 10.0, 1.0, 10.0]}, | |
dtype="Float64", | |
) | |
result = crosstab( | |
df["A"], | |
df["B"], | |
values=df["C"], | |
aggfunc="sum", | |
margins=True, | |
) | |
expected = DataFrame( | |
[ | |
[-1.0, pd.NA, 10.0, 9.0], | |
[10.0, 1.0, pd.NA, 11.0], | |
[9.0, 1.0, 10.0, 20.0], | |
], | |
index=Index([1.0, 2.0, "All"], dtype="object", name="A"), | |
columns=Index([3.0, 4.0, 5.0, "All"], dtype="object", name="B"), | |
dtype="Float64", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_margin_with_ordered_categorical_column(self): | |
# GH 25278 | |
df = DataFrame( | |
{ | |
"First": ["B", "B", "C", "A", "B", "C"], | |
"Second": ["C", "B", "B", "B", "C", "A"], | |
} | |
) | |
df["First"] = df["First"].astype(CategoricalDtype(ordered=True)) | |
customized_categories_order = ["C", "A", "B"] | |
df["First"] = df["First"].cat.reorder_categories(customized_categories_order) | |
result = crosstab(df["First"], df["Second"], margins=True) | |
expected_index = Index(["C", "A", "B", "All"], name="First") | |
expected_columns = Index(["A", "B", "C", "All"], name="Second") | |
expected_data = [[1, 1, 0, 2], [0, 1, 0, 1], [0, 1, 2, 3], [1, 3, 2, 6]] | |
expected = DataFrame( | |
expected_data, index=expected_index, columns=expected_columns | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_categoricals(a_dtype, b_dtype): | |
# https://github.com/pandas-dev/pandas/issues/37465 | |
g = np.random.default_rng(2) | |
a = Series(g.integers(0, 3, size=100)).astype(a_dtype) | |
b = Series(g.integers(0, 2, size=100)).astype(b_dtype) | |
result = crosstab(a, b, margins=True, dropna=False) | |
columns = Index([0, 1, "All"], dtype="object", name="col_0") | |
index = Index([0, 1, 2, "All"], dtype="object", name="row_0") | |
values = [[10, 18, 28], [23, 16, 39], [17, 16, 33], [50, 50, 100]] | |
expected = DataFrame(values, index, columns) | |
tm.assert_frame_equal(result, expected) | |
# Verify when categorical does not have all values present | |
a.loc[a == 1] = 2 | |
a_is_cat = isinstance(a.dtype, CategoricalDtype) | |
assert not a_is_cat or a.value_counts().loc[1] == 0 | |
result = crosstab(a, b, margins=True, dropna=False) | |
values = [[10, 18, 28], [0, 0, 0], [40, 32, 72], [50, 50, 100]] | |
expected = DataFrame(values, index, columns) | |
if not a_is_cat: | |
expected = expected.loc[[0, 2, "All"]] | |
expected["All"] = expected["All"].astype("int64") | |
tm.assert_frame_equal(result, expected) | |