peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/reshape
/test_util.py
import numpy as np | |
import pytest | |
from pandas import ( | |
Index, | |
date_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.reshape.util import cartesian_product | |
class TestCartesianProduct: | |
def test_simple(self): | |
x, y = list("ABC"), [1, 22] | |
result1, result2 = cartesian_product([x, y]) | |
expected1 = np.array(["A", "A", "B", "B", "C", "C"]) | |
expected2 = np.array([1, 22, 1, 22, 1, 22]) | |
tm.assert_numpy_array_equal(result1, expected1) | |
tm.assert_numpy_array_equal(result2, expected2) | |
def test_datetimeindex(self): | |
# regression test for GitHub issue #6439 | |
# make sure that the ordering on datetimeindex is consistent | |
x = date_range("2000-01-01", periods=2) | |
result1, result2 = (Index(y).day for y in cartesian_product([x, x])) | |
expected1 = Index([1, 1, 2, 2], dtype=np.int32) | |
expected2 = Index([1, 2, 1, 2], dtype=np.int32) | |
tm.assert_index_equal(result1, expected1) | |
tm.assert_index_equal(result2, expected2) | |
def test_tzaware_retained(self): | |
x = date_range("2000-01-01", periods=2, tz="US/Pacific") | |
y = np.array([3, 4]) | |
result1, result2 = cartesian_product([x, y]) | |
expected = x.repeat(2) | |
tm.assert_index_equal(result1, expected) | |
def test_tzaware_retained_categorical(self): | |
x = date_range("2000-01-01", periods=2, tz="US/Pacific").astype("category") | |
y = np.array([3, 4]) | |
result1, result2 = cartesian_product([x, y]) | |
expected = x.repeat(2) | |
tm.assert_index_equal(result1, expected) | |
def test_empty(self, x, y): | |
# product of empty factors | |
expected1 = np.array([], dtype=np.asarray(x).dtype) | |
expected2 = np.array([], dtype=np.asarray(y).dtype) | |
result1, result2 = cartesian_product([x, y]) | |
tm.assert_numpy_array_equal(result1, expected1) | |
tm.assert_numpy_array_equal(result2, expected2) | |
def test_empty_input(self): | |
# empty product (empty input): | |
result = cartesian_product([]) | |
expected = [] | |
assert result == expected | |
def test_invalid_input(self, X): | |
msg = "Input must be a list-like of list-likes" | |
with pytest.raises(TypeError, match=msg): | |
cartesian_product(X=X) | |
def test_exceed_product_space(self): | |
# GH31355: raise useful error when produce space is too large | |
msg = "Product space too large to allocate arrays!" | |
with pytest.raises(ValueError, match=msg): | |
dims = [np.arange(0, 22, dtype=np.int16) for i in range(12)] + [ | |
(np.arange(15128, dtype=np.int16)), | |
] | |
cartesian_product(X=dims) | |