peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/strings
/test_api.py
import numpy as np | |
import pytest | |
from pandas import ( | |
CategoricalDtype, | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
_testing as tm, | |
option_context, | |
) | |
from pandas.core.strings.accessor import StringMethods | |
# subset of the full set from pandas/conftest.py | |
_any_allowed_skipna_inferred_dtype = [ | |
("string", ["a", np.nan, "c"]), | |
("bytes", [b"a", np.nan, b"c"]), | |
("empty", [np.nan, np.nan, np.nan]), | |
("empty", []), | |
("mixed-integer", ["a", np.nan, 2]), | |
] | |
ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id | |
def any_allowed_skipna_inferred_dtype(request): | |
""" | |
Fixture for all (inferred) dtypes allowed in StringMethods.__init__ | |
The covered (inferred) types are: | |
* 'string' | |
* 'empty' | |
* 'bytes' | |
* 'mixed' | |
* 'mixed-integer' | |
Returns | |
------- | |
inferred_dtype : str | |
The string for the inferred dtype from _libs.lib.infer_dtype | |
values : np.ndarray | |
An array of object dtype that will be inferred to have | |
`inferred_dtype` | |
Examples | |
-------- | |
>>> from pandas._libs import lib | |
>>> | |
>>> def test_something(any_allowed_skipna_inferred_dtype): | |
... inferred_dtype, values = any_allowed_skipna_inferred_dtype | |
... # will pass | |
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype | |
... | |
... # constructor for .str-accessor will also pass | |
... Series(values).str | |
""" | |
inferred_dtype, values = request.param | |
values = np.array(values, dtype=object) # object dtype to avoid casting | |
# correctness of inference tested in tests/dtypes/test_inference.py | |
return inferred_dtype, values | |
def test_api(any_string_dtype): | |
# GH 6106, GH 9322 | |
assert Series.str is StringMethods | |
assert isinstance(Series([""], dtype=any_string_dtype).str, StringMethods) | |
def test_api_mi_raises(): | |
# GH 23679 | |
mi = MultiIndex.from_arrays([["a", "b", "c"]]) | |
msg = "Can only use .str accessor with Index, not MultiIndex" | |
with pytest.raises(AttributeError, match=msg): | |
mi.str | |
assert not hasattr(mi, "str") | |
def test_api_per_dtype(index_or_series, dtype, any_skipna_inferred_dtype): | |
# one instance of parametrized fixture | |
box = index_or_series | |
inferred_dtype, values = any_skipna_inferred_dtype | |
t = box(values, dtype=dtype) # explicit dtype to avoid casting | |
types_passing_constructor = [ | |
"string", | |
"unicode", | |
"empty", | |
"bytes", | |
"mixed", | |
"mixed-integer", | |
] | |
if inferred_dtype in types_passing_constructor: | |
# GH 6106 | |
assert isinstance(t.str, StringMethods) | |
else: | |
# GH 9184, GH 23011, GH 23163 | |
msg = "Can only use .str accessor with string values.*" | |
with pytest.raises(AttributeError, match=msg): | |
t.str | |
assert not hasattr(t, "str") | |
def test_api_per_method( | |
index_or_series, | |
dtype, | |
any_allowed_skipna_inferred_dtype, | |
any_string_method, | |
request, | |
): | |
# this test does not check correctness of the different methods, | |
# just that the methods work on the specified (inferred) dtypes, | |
# and raise on all others | |
box = index_or_series | |
# one instance of each parametrized fixture | |
inferred_dtype, values = any_allowed_skipna_inferred_dtype | |
method_name, args, kwargs = any_string_method | |
reason = None | |
if box is Index and values.size == 0: | |
if method_name in ["partition", "rpartition"] and kwargs.get("expand", True): | |
raises = TypeError | |
reason = "Method cannot deal with empty Index" | |
elif method_name == "split" and kwargs.get("expand", None): | |
raises = TypeError | |
reason = "Split fails on empty Series when expand=True" | |
elif method_name == "get_dummies": | |
raises = ValueError | |
reason = "Need to fortify get_dummies corner cases" | |
elif ( | |
box is Index | |
and inferred_dtype == "empty" | |
and dtype == object | |
and method_name == "get_dummies" | |
): | |
raises = ValueError | |
reason = "Need to fortify get_dummies corner cases" | |
if reason is not None: | |
mark = pytest.mark.xfail(raises=raises, reason=reason) | |
request.applymarker(mark) | |
t = box(values, dtype=dtype) # explicit dtype to avoid casting | |
method = getattr(t.str, method_name) | |
bytes_allowed = method_name in ["decode", "get", "len", "slice"] | |
# as of v0.23.4, all methods except 'cat' are very lenient with the | |
# allowed data types, just returning NaN for entries that error. | |
# This could be changed with an 'errors'-kwarg to the `str`-accessor, | |
# see discussion in GH 13877 | |
mixed_allowed = method_name not in ["cat"] | |
allowed_types = ( | |
["string", "unicode", "empty"] | |
+ ["bytes"] * bytes_allowed | |
+ ["mixed", "mixed-integer"] * mixed_allowed | |
) | |
if inferred_dtype in allowed_types: | |
# xref GH 23555, GH 23556 | |
with option_context("future.no_silent_downcasting", True): | |
method(*args, **kwargs) # works! | |
else: | |
# GH 23011, GH 23163 | |
msg = ( | |
f"Cannot use .str.{method_name} with values of " | |
f"inferred dtype {repr(inferred_dtype)}." | |
) | |
with pytest.raises(TypeError, match=msg): | |
method(*args, **kwargs) | |
def test_api_for_categorical(any_string_method, any_string_dtype): | |
# https://github.com/pandas-dev/pandas/issues/10661 | |
s = Series(list("aabb"), dtype=any_string_dtype) | |
s = s + " " + s | |
c = s.astype("category") | |
c = c.astype(CategoricalDtype(c.dtype.categories.astype("object"))) | |
assert isinstance(c.str, StringMethods) | |
method_name, args, kwargs = any_string_method | |
result = getattr(c.str, method_name)(*args, **kwargs) | |
expected = getattr(s.astype("object").str, method_name)(*args, **kwargs) | |
if isinstance(result, DataFrame): | |
tm.assert_frame_equal(result, expected) | |
elif isinstance(result, Series): | |
tm.assert_series_equal(result, expected) | |
else: | |
# str.cat(others=None) returns string, for example | |
assert result == expected | |