peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/strings
/test_extract.py
from datetime import datetime | |
import re | |
import numpy as np | |
import pytest | |
from pandas.core.dtypes.dtypes import ArrowDtype | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
_testing as tm, | |
) | |
def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype): | |
# TODO: should this raise TypeError | |
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) | |
with pytest.raises(ValueError, match="expand must be True or False"): | |
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) | |
def test_extract_expand_kwarg(any_string_dtype): | |
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) | |
expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype) | |
result = s.str.extract(".*(BAD[_]+).*") | |
tm.assert_frame_equal(result, expected) | |
result = s.str.extract(".*(BAD[_]+).*", expand=True) | |
tm.assert_frame_equal(result, expected) | |
expected = DataFrame( | |
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_expand_False_mixed_object(): | |
ser = Series( | |
["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0] | |
) | |
# two groups | |
result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False) | |
er = [np.nan, np.nan] # empty row | |
expected = DataFrame( | |
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object | |
) | |
tm.assert_frame_equal(result, expected) | |
# single group | |
result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False) | |
expected = Series( | |
["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan], | |
dtype=object, | |
) | |
tm.assert_series_equal(result, expected) | |
def test_extract_expand_index_raises(): | |
# GH9980 | |
# Index only works with one regex group since | |
# multi-group would expand to a frame | |
idx = Index(["A1", "A2", "A3", "A4", "B5"]) | |
msg = "only one regex group is supported with Index" | |
with pytest.raises(ValueError, match=msg): | |
idx.str.extract("([AB])([123])", expand=False) | |
def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype): | |
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) | |
msg = "pattern contains no capture groups" | |
# no groups | |
with pytest.raises(ValueError, match=msg): | |
s_or_idx.str.extract("[ABC][123]", expand=False) | |
# only non-capturing groups | |
with pytest.raises(ValueError, match=msg): | |
s_or_idx.str.extract("(?:[AB]).*", expand=False) | |
def test_extract_expand_single_capture_group(index_or_series, any_string_dtype): | |
# single group renames series/index properly | |
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) | |
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False) | |
expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype) | |
if index_or_series == Series: | |
tm.assert_series_equal(result, expected) | |
else: | |
tm.assert_index_equal(result, expected) | |
def test_extract_expand_capture_groups(any_string_dtype): | |
s = Series(["A1", "B2", "C3"], dtype=any_string_dtype) | |
# one group, no matches | |
result = s.str.extract("(_)", expand=False) | |
expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype) | |
tm.assert_series_equal(result, expected) | |
# two groups, no matches | |
result = s.str.extract("(_)(_)", expand=False) | |
expected = DataFrame( | |
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one group, some matches | |
result = s.str.extract("([AB])[123]", expand=False) | |
expected = Series(["A", "B", np.nan], dtype=any_string_dtype) | |
tm.assert_series_equal(result, expected) | |
# two groups, some matches | |
result = s.str.extract("([AB])([123])", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one named group | |
result = s.str.extract("(?P<letter>[AB])", expand=False) | |
expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype) | |
tm.assert_series_equal(result, expected) | |
# two named groups | |
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], | |
columns=["letter", "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# mix named and unnamed groups | |
result = s.str.extract("([AB])(?P<number>[123])", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], | |
columns=[0, "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# one normal group, one non-capturing group | |
result = s.str.extract("([AB])(?:[123])", expand=False) | |
expected = Series(["A", "B", np.nan], dtype=any_string_dtype) | |
tm.assert_series_equal(result, expected) | |
# two normal groups, one non-capturing group | |
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) | |
result = s.str.extract("([AB])([123])(?:[123])", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one optional group followed by one normal group | |
s = Series(["A1", "B2", "3"], dtype=any_string_dtype) | |
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, "3"]], | |
columns=["letter", "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# one normal group followed by one optional group | |
s = Series(["A1", "B2", "C"], dtype=any_string_dtype) | |
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], ["C", np.nan]], | |
columns=["letter", "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_expand_capture_groups_index(index, any_string_dtype): | |
# https://github.com/pandas-dev/pandas/issues/6348 | |
# not passing index to the extractor | |
data = ["A1", "B2", "C"] | |
if len(index) == 0: | |
pytest.skip("Test requires len(index) > 0") | |
while len(index) < len(data): | |
index = index.repeat(2) | |
index = index[: len(data)] | |
ser = Series(data, index=index, dtype=any_string_dtype) | |
result = ser.str.extract(r"(\d)", expand=False) | |
expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype) | |
tm.assert_series_equal(result, expected) | |
result = ser.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], ["C", np.nan]], | |
columns=["letter", "number"], | |
index=index, | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_single_series_name_is_preserved(any_string_dtype): | |
s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype) | |
result = s.str.extract(r"(?P<sue>[a-z])", expand=False) | |
expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype) | |
tm.assert_series_equal(result, expected) | |
def test_extract_expand_True(any_string_dtype): | |
# Contains tests like those in test_match and some others. | |
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) | |
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True) | |
expected = DataFrame( | |
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_expand_True_mixed_object(): | |
er = [np.nan, np.nan] # empty row | |
mixed = Series( | |
[ | |
"aBAD_BAD", | |
np.nan, | |
"BAD_b_BAD", | |
True, | |
datetime.today(), | |
"foo", | |
None, | |
1, | |
2.0, | |
] | |
) | |
result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True) | |
expected = DataFrame( | |
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_expand_True_single_capture_group_raises( | |
index_or_series, any_string_dtype | |
): | |
# these should work for both Series and Index | |
# no groups | |
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) | |
msg = "pattern contains no capture groups" | |
with pytest.raises(ValueError, match=msg): | |
s_or_idx.str.extract("[ABC][123]", expand=True) | |
# only non-capturing groups | |
with pytest.raises(ValueError, match=msg): | |
s_or_idx.str.extract("(?:[AB]).*", expand=True) | |
def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype): | |
# single group renames series/index properly | |
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) | |
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True) | |
expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_series(name, any_string_dtype): | |
# extract should give the same result whether or not the series has a name. | |
s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype) | |
# one group, no matches | |
result = s.str.extract("(_)", expand=True) | |
expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
# two groups, no matches | |
result = s.str.extract("(_)(_)", expand=True) | |
expected = DataFrame( | |
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one group, some matches | |
result = s.str.extract("([AB])[123]", expand=True) | |
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
# two groups, some matches | |
result = s.str.extract("([AB])([123])", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one named group | |
result = s.str.extract("(?P<letter>[AB])", expand=True) | |
expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
# two named groups | |
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], | |
columns=["letter", "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# mix named and unnamed groups | |
result = s.str.extract("([AB])(?P<number>[123])", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], | |
columns=[0, "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# one normal group, one non-capturing group | |
result = s.str.extract("([AB])(?:[123])", expand=True) | |
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_optional_groups(any_string_dtype): | |
# two normal groups, one non-capturing group | |
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) | |
result = s.str.extract("([AB])([123])(?:[123])", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one optional group followed by one normal group | |
s = Series(["A1", "B2", "3"], dtype=any_string_dtype) | |
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], [np.nan, "3"]], | |
columns=["letter", "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# one normal group followed by one optional group | |
s = Series(["A1", "B2", "C"], dtype=any_string_dtype) | |
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], ["C", np.nan]], | |
columns=["letter", "number"], | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_dataframe_capture_groups_index(index, any_string_dtype): | |
# GH6348 | |
# not passing index to the extractor | |
data = ["A1", "B2", "C"] | |
if len(index) < len(data): | |
pytest.skip(f"Index needs more than {len(data)} values") | |
index = index[: len(data)] | |
s = Series(data, index=index, dtype=any_string_dtype) | |
result = s.str.extract(r"(\d)", expand=True) | |
expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True) | |
expected = DataFrame( | |
[["A", "1"], ["B", "2"], ["C", np.nan]], | |
columns=["letter", "number"], | |
index=index, | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extract_single_group_returns_frame(any_string_dtype): | |
# GH11386 extract should always return DataFrame, even when | |
# there is only one group. Prior to v0.18.0, extract returned | |
# Series when there was only one group in the regex. | |
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) | |
result = s.str.extract(r"(?P<letter>[a-z])", expand=True) | |
expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall(any_string_dtype): | |
data = [ | |
"[email protected]", | |
"[email protected]", | |
"[email protected]", | |
"[email protected] some text [email protected]", | |
"[email protected] some text [email protected] and [email protected]", | |
np.nan, | |
"", | |
] | |
expected_tuples = [ | |
("dave", "google", "com"), | |
("tdhock5", "gmail", "com"), | |
("maudelaperriere", "gmail", "com"), | |
("rob", "gmail", "com"), | |
("steve", "gmail", "com"), | |
("a", "b", "com"), | |
("c", "d", "com"), | |
("e", "f", "com"), | |
] | |
pat = r""" | |
(?P<user>[a-z0-9]+) | |
@ | |
(?P<domain>[a-z]+) | |
\. | |
(?P<tld>[a-z]{2,4}) | |
""" | |
expected_columns = ["user", "domain", "tld"] | |
s = Series(data, dtype=any_string_dtype) | |
# extractall should return a DataFrame with one row for each match, indexed by the | |
# subject from which the match came. | |
expected_index = MultiIndex.from_tuples( | |
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)], | |
names=(None, "match"), | |
) | |
expected = DataFrame( | |
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype | |
) | |
result = s.str.extractall(pat, flags=re.VERBOSE) | |
tm.assert_frame_equal(result, expected) | |
# The index of the input Series should be used to construct the index of the output | |
# DataFrame: | |
mi = MultiIndex.from_tuples( | |
[ | |
("single", "Dave"), | |
("single", "Toby"), | |
("single", "Maude"), | |
("multiple", "robAndSteve"), | |
("multiple", "abcdef"), | |
("none", "missing"), | |
("none", "empty"), | |
] | |
) | |
s = Series(data, index=mi, dtype=any_string_dtype) | |
expected_index = MultiIndex.from_tuples( | |
[ | |
("single", "Dave", 0), | |
("single", "Toby", 0), | |
("single", "Maude", 0), | |
("multiple", "robAndSteve", 0), | |
("multiple", "robAndSteve", 1), | |
("multiple", "abcdef", 0), | |
("multiple", "abcdef", 1), | |
("multiple", "abcdef", 2), | |
], | |
names=(None, None, "match"), | |
) | |
expected = DataFrame( | |
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype | |
) | |
result = s.str.extractall(pat, flags=re.VERBOSE) | |
tm.assert_frame_equal(result, expected) | |
# MultiIndexed subject with names. | |
s = Series(data, index=mi, dtype=any_string_dtype) | |
s.index.names = ("matches", "description") | |
expected_index.names = ("matches", "description", "match") | |
expected = DataFrame( | |
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype | |
) | |
result = s.str.extractall(pat, flags=re.VERBOSE) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall_column_names(pat, expected_names, any_string_dtype): | |
s = Series(["", "A1", "32"], dtype=any_string_dtype) | |
result = s.str.extractall(pat) | |
expected = DataFrame( | |
[("A", "1"), (np.nan, "3"), (np.nan, "2")], | |
index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")), | |
columns=expected_names, | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall_single_group(any_string_dtype): | |
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype) | |
expected_index = MultiIndex.from_tuples( | |
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match") | |
) | |
# extractall(one named group) returns DataFrame with one named column. | |
result = s.str.extractall(r"(?P<letter>[a-z])") | |
expected = DataFrame( | |
{"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# extractall(one un-named group) returns DataFrame with one un-named column. | |
result = s.str.extractall(r"([a-z])") | |
expected = DataFrame( | |
["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall_single_group_with_quantifier(any_string_dtype): | |
# GH#13382 | |
# extractall(one un-named group with quantifier) returns DataFrame with one un-named | |
# column. | |
s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype) | |
result = s.str.extractall(r"([a-z]+)") | |
expected = DataFrame( | |
["ab", "abc", "d", "cd"], | |
index=MultiIndex.from_tuples( | |
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match") | |
), | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall_no_matches(data, names, any_string_dtype): | |
# GH19075 extractall with no matches should return a valid MultiIndex | |
n = len(data) | |
if len(names) == 1: | |
index = Index(range(n), name=names[0]) | |
else: | |
tuples = (tuple([i] * (n - 1)) for i in range(n)) | |
index = MultiIndex.from_tuples(tuples, names=names) | |
s = Series(data, name="series_name", index=index, dtype=any_string_dtype) | |
expected_index = MultiIndex.from_tuples([], names=(names + ("match",))) | |
# one un-named group. | |
result = s.str.extractall("(z)") | |
expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
# two un-named groups. | |
result = s.str.extractall("(z)(z)") | |
expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype) | |
tm.assert_frame_equal(result, expected) | |
# one named group. | |
result = s.str.extractall("(?P<first>z)") | |
expected = DataFrame( | |
columns=["first"], index=expected_index, dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# two named groups. | |
result = s.str.extractall("(?P<first>z)(?P<second>z)") | |
expected = DataFrame( | |
columns=["first", "second"], index=expected_index, dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
# one named, one un-named. | |
result = s.str.extractall("(z)(?P<second>z)") | |
expected = DataFrame( | |
columns=[0, "second"], index=expected_index, dtype=any_string_dtype | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall_stringindex(any_string_dtype): | |
s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype) | |
result = s.str.extractall(r"[ab](?P<digit>\d)") | |
expected = DataFrame( | |
{"digit": ["1", "2", "1"]}, | |
index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]), | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
# index should return the same result as the default index without name thus | |
# index.name doesn't affect to the result | |
if any_string_dtype == "object": | |
for idx in [ | |
Index(["a1a2", "b1", "c1"], dtype=object), | |
Index(["a1a2", "b1", "c1"], name="xxx", dtype=object), | |
]: | |
result = idx.str.extractall(r"[ab](?P<digit>\d)") | |
tm.assert_frame_equal(result, expected) | |
s = Series( | |
["a1a2", "b1", "c1"], | |
name="s_name", | |
index=Index(["XX", "yy", "zz"], name="idx_name"), | |
dtype=any_string_dtype, | |
) | |
result = s.str.extractall(r"[ab](?P<digit>\d)") | |
expected = DataFrame( | |
{"digit": ["1", "2", "1"]}, | |
index=MultiIndex.from_tuples( | |
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"] | |
), | |
dtype=any_string_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_extractall_no_capture_groups_raises(any_string_dtype): | |
# Does not make sense to use extractall with a regex that has no capture groups. | |
# (it returns DataFrame with one column for each capture group) | |
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype) | |
with pytest.raises(ValueError, match="no capture groups"): | |
s.str.extractall(r"[a-z]") | |
def test_extract_index_one_two_groups(): | |
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name") | |
r = s.index.str.extract(r"([A-Z])", expand=True) | |
e = DataFrame(["A", "B", "D"]) | |
tm.assert_frame_equal(r, e) | |
# Prior to v0.18.0, index.str.extract(regex with one group) | |
# returned Index. With more than one group, extract raised an | |
# error (GH9980). Now extract always returns DataFrame. | |
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True) | |
e_list = [("A", "3"), ("B", "3"), ("D", "4")] | |
e = DataFrame(e_list, columns=["letter", "digit"]) | |
tm.assert_frame_equal(r, e) | |
def test_extractall_same_as_extract(any_string_dtype): | |
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) | |
pattern_two_noname = r"([a-z])([0-9])" | |
extract_two_noname = s.str.extract(pattern_two_noname, expand=True) | |
has_multi_index = s.str.extractall(pattern_two_noname) | |
no_multi_index = has_multi_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_two_noname, no_multi_index) | |
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])" | |
extract_two_named = s.str.extract(pattern_two_named, expand=True) | |
has_multi_index = s.str.extractall(pattern_two_named) | |
no_multi_index = has_multi_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_two_named, no_multi_index) | |
pattern_one_named = r"(?P<group_name>[a-z])" | |
extract_one_named = s.str.extract(pattern_one_named, expand=True) | |
has_multi_index = s.str.extractall(pattern_one_named) | |
no_multi_index = has_multi_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_one_named, no_multi_index) | |
pattern_one_noname = r"([a-z])" | |
extract_one_noname = s.str.extract(pattern_one_noname, expand=True) | |
has_multi_index = s.str.extractall(pattern_one_noname) | |
no_multi_index = has_multi_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_one_noname, no_multi_index) | |
def test_extractall_same_as_extract_subject_index(any_string_dtype): | |
# same as above tests, but s has an MultiIndex. | |
mi = MultiIndex.from_tuples( | |
[("A", "first"), ("B", "second"), ("C", "third")], | |
names=("capital", "ordinal"), | |
) | |
s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype) | |
pattern_two_noname = r"([a-z])([0-9])" | |
extract_two_noname = s.str.extract(pattern_two_noname, expand=True) | |
has_match_index = s.str.extractall(pattern_two_noname) | |
no_match_index = has_match_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_two_noname, no_match_index) | |
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])" | |
extract_two_named = s.str.extract(pattern_two_named, expand=True) | |
has_match_index = s.str.extractall(pattern_two_named) | |
no_match_index = has_match_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_two_named, no_match_index) | |
pattern_one_named = r"(?P<group_name>[a-z])" | |
extract_one_named = s.str.extract(pattern_one_named, expand=True) | |
has_match_index = s.str.extractall(pattern_one_named) | |
no_match_index = has_match_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_one_named, no_match_index) | |
pattern_one_noname = r"([a-z])" | |
extract_one_noname = s.str.extract(pattern_one_noname, expand=True) | |
has_match_index = s.str.extractall(pattern_one_noname) | |
no_match_index = has_match_index.xs(0, level="match") | |
tm.assert_frame_equal(extract_one_noname, no_match_index) | |
def test_extractall_preserves_dtype(): | |
# Ensure that when extractall is called on a series with specific dtypes set, that | |
# the dtype is preserved in the resulting DataFrame's column. | |
pa = pytest.importorskip("pyarrow") | |
result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)") | |
assert result.dtypes[0] == "string[pyarrow]" | |