peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/test_multilevel.py
import datetime | |
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
MultiIndex, | |
Series, | |
) | |
import pandas._testing as tm | |
class TestMultiLevel: | |
def test_reindex_level(self, multiindex_year_month_day_dataframe_random_data): | |
# axis=0 | |
ymd = multiindex_year_month_day_dataframe_random_data | |
month_sums = ymd.groupby("month").sum() | |
result = month_sums.reindex(ymd.index, level=1) | |
expected = ymd.groupby(level="month").transform("sum") | |
tm.assert_frame_equal(result, expected) | |
# Series | |
result = month_sums["A"].reindex(ymd.index, level=1) | |
expected = ymd["A"].groupby(level="month").transform("sum") | |
tm.assert_series_equal(result, expected, check_names=False) | |
# axis=1 | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
gb = ymd.T.groupby("month", axis=1) | |
month_sums = gb.sum() | |
result = month_sums.reindex(columns=ymd.index, level=1) | |
expected = ymd.groupby(level="month").transform("sum").T | |
tm.assert_frame_equal(result, expected) | |
def test_reindex(self, multiindex_dataframe_random_data): | |
frame = multiindex_dataframe_random_data | |
expected = frame.iloc[[0, 3]] | |
reindexed = frame.loc[[("foo", "one"), ("bar", "one")]] | |
tm.assert_frame_equal(reindexed, expected) | |
def test_reindex_preserve_levels( | |
self, multiindex_year_month_day_dataframe_random_data, using_copy_on_write | |
): | |
ymd = multiindex_year_month_day_dataframe_random_data | |
new_index = ymd.index[::10] | |
chunk = ymd.reindex(new_index) | |
if using_copy_on_write: | |
assert chunk.index.is_(new_index) | |
else: | |
assert chunk.index is new_index | |
chunk = ymd.loc[new_index] | |
assert chunk.index.equals(new_index) | |
ymdT = ymd.T | |
chunk = ymdT.reindex(columns=new_index) | |
if using_copy_on_write: | |
assert chunk.columns.is_(new_index) | |
else: | |
assert chunk.columns is new_index | |
chunk = ymdT.loc[:, new_index] | |
assert chunk.columns.equals(new_index) | |
def test_groupby_transform(self, multiindex_dataframe_random_data): | |
frame = multiindex_dataframe_random_data | |
s = frame["A"] | |
grouper = s.index.get_level_values(0) | |
grouped = s.groupby(grouper, group_keys=False) | |
applied = grouped.apply(lambda x: x * 2) | |
expected = grouped.transform(lambda x: x * 2) | |
result = applied.reindex(expected.index) | |
tm.assert_series_equal(result, expected, check_names=False) | |
def test_groupby_corner(self): | |
midx = MultiIndex( | |
levels=[["foo"], ["bar"], ["baz"]], | |
codes=[[0], [0], [0]], | |
names=["one", "two", "three"], | |
) | |
df = DataFrame( | |
[np.random.default_rng(2).random(4)], | |
columns=["a", "b", "c", "d"], | |
index=midx, | |
) | |
# should work | |
df.groupby(level="three") | |
def test_groupby_level_no_obs(self): | |
# #1697 | |
midx = MultiIndex.from_tuples( | |
[ | |
("f1", "s1"), | |
("f1", "s2"), | |
("f2", "s1"), | |
("f2", "s2"), | |
("f3", "s1"), | |
("f3", "s2"), | |
] | |
) | |
df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) | |
df1 = df.loc(axis=1)[df.columns.map(lambda u: u[0] in ["f2", "f3"])] | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grouped = df1.groupby(axis=1, level=0) | |
result = grouped.sum() | |
assert (result.columns == ["f2", "f3"]).all() | |
def test_setitem_with_expansion_multiindex_columns( | |
self, multiindex_year_month_day_dataframe_random_data | |
): | |
ymd = multiindex_year_month_day_dataframe_random_data | |
df = ymd[:5].T | |
df[2000, 1, 10] = df[2000, 1, 7] | |
assert isinstance(df.columns, MultiIndex) | |
assert (df[2000, 1, 10] == df[2000, 1, 7]).all() | |
def test_alignment(self): | |
x = Series( | |
data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)]) | |
) | |
y = Series( | |
data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)]) | |
) | |
res = x - y | |
exp_index = x.index.union(y.index) | |
exp = x.reindex(exp_index) - y.reindex(exp_index) | |
tm.assert_series_equal(res, exp) | |
# hit non-monotonic code path | |
res = x[::-1] - y[::-1] | |
exp_index = x.index.union(y.index) | |
exp = x.reindex(exp_index) - y.reindex(exp_index) | |
tm.assert_series_equal(res, exp) | |
def test_groupby_multilevel(self, multiindex_year_month_day_dataframe_random_data): | |
ymd = multiindex_year_month_day_dataframe_random_data | |
result = ymd.groupby(level=[0, 1]).mean() | |
k1 = ymd.index.get_level_values(0) | |
k2 = ymd.index.get_level_values(1) | |
expected = ymd.groupby([k1, k2]).mean() | |
# TODO groupby with level_values drops names | |
tm.assert_frame_equal(result, expected, check_names=False) | |
assert result.index.names == ymd.index.names[:2] | |
result2 = ymd.groupby(level=ymd.index.names[:2]).mean() | |
tm.assert_frame_equal(result, result2) | |
def test_multilevel_consolidate(self): | |
index = MultiIndex.from_tuples( | |
[("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")] | |
) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((4, 4)), index=index, columns=index | |
) | |
df["Totals", ""] = df.sum(1) | |
df = df._consolidate() | |
def test_level_with_tuples(self): | |
index = MultiIndex( | |
levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]], | |
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], | |
) | |
series = Series(np.random.default_rng(2).standard_normal(6), index=index) | |
frame = DataFrame(np.random.default_rng(2).standard_normal((6, 4)), index=index) | |
result = series[("foo", "bar", 0)] | |
result2 = series.loc[("foo", "bar", 0)] | |
expected = series[:2] | |
expected.index = expected.index.droplevel(0) | |
tm.assert_series_equal(result, expected) | |
tm.assert_series_equal(result2, expected) | |
with pytest.raises(KeyError, match=r"^\(\('foo', 'bar', 0\), 2\)$"): | |
series[("foo", "bar", 0), 2] | |
result = frame.loc[("foo", "bar", 0)] | |
result2 = frame.xs(("foo", "bar", 0)) | |
expected = frame[:2] | |
expected.index = expected.index.droplevel(0) | |
tm.assert_frame_equal(result, expected) | |
tm.assert_frame_equal(result2, expected) | |
index = MultiIndex( | |
levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]], | |
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], | |
) | |
series = Series(np.random.default_rng(2).standard_normal(6), index=index) | |
frame = DataFrame(np.random.default_rng(2).standard_normal((6, 4)), index=index) | |
result = series[("foo", "bar")] | |
result2 = series.loc[("foo", "bar")] | |
expected = series[:2] | |
expected.index = expected.index.droplevel(0) | |
tm.assert_series_equal(result, expected) | |
tm.assert_series_equal(result2, expected) | |
result = frame.loc[("foo", "bar")] | |
result2 = frame.xs(("foo", "bar")) | |
expected = frame[:2] | |
expected.index = expected.index.droplevel(0) | |
tm.assert_frame_equal(result, expected) | |
tm.assert_frame_equal(result2, expected) | |
def test_reindex_level_partial_selection(self, multiindex_dataframe_random_data): | |
frame = multiindex_dataframe_random_data | |
result = frame.reindex(["foo", "qux"], level=0) | |
expected = frame.iloc[[0, 1, 2, 7, 8, 9]] | |
tm.assert_frame_equal(result, expected) | |
result = frame.T.reindex(["foo", "qux"], axis=1, level=0) | |
tm.assert_frame_equal(result, expected.T) | |
result = frame.loc[["foo", "qux"]] | |
tm.assert_frame_equal(result, expected) | |
result = frame["A"].loc[["foo", "qux"]] | |
tm.assert_series_equal(result, expected["A"]) | |
result = frame.T.loc[:, ["foo", "qux"]] | |
tm.assert_frame_equal(result, expected.T) | |
def test_empty_frame_groupby_dtypes_consistency(self, d): | |
# GH 20888 | |
group_keys = ["a", "b", "c"] | |
df = DataFrame({"a": [1], "b": [2], "c": [3], "d": [d]}) | |
g = df[df.a == 2].groupby(group_keys) | |
result = g.first().index | |
expected = MultiIndex( | |
levels=[[1], [2], [3]], codes=[[], [], []], names=["a", "b", "c"] | |
) | |
tm.assert_index_equal(result, expected) | |
def test_duplicate_groupby_issues(self): | |
idx_tp = [ | |
("600809", "20061231"), | |
("600809", "20070331"), | |
("600809", "20070630"), | |
("600809", "20070331"), | |
] | |
dt = ["demo", "demo", "demo", "demo"] | |
idx = MultiIndex.from_tuples(idx_tp, names=["STK_ID", "RPT_Date"]) | |
s = Series(dt, index=idx) | |
result = s.groupby(s.index).first() | |
assert len(result) == 3 | |
def test_subsets_multiindex_dtype(self): | |
# GH 20757 | |
data = [["x", 1]] | |
columns = [("a", "b", np.nan), ("a", "c", 0.0)] | |
df = DataFrame(data, columns=MultiIndex.from_tuples(columns)) | |
expected = df.dtypes.a.b | |
result = df.a.b.dtypes | |
tm.assert_series_equal(result, expected) | |
def test_datetime_object_multiindex(self): | |
data_dic = { | |
(0, datetime.date(2018, 3, 3)): {"A": 1, "B": 10}, | |
(0, datetime.date(2018, 3, 4)): {"A": 2, "B": 11}, | |
(1, datetime.date(2018, 3, 3)): {"A": 3, "B": 12}, | |
(1, datetime.date(2018, 3, 4)): {"A": 4, "B": 13}, | |
} | |
result = DataFrame.from_dict(data_dic, orient="index") | |
data = {"A": [1, 2, 3, 4], "B": [10, 11, 12, 13]} | |
index = [ | |
[0, 0, 1, 1], | |
[ | |
datetime.date(2018, 3, 3), | |
datetime.date(2018, 3, 4), | |
datetime.date(2018, 3, 3), | |
datetime.date(2018, 3, 4), | |
], | |
] | |
expected = DataFrame(data=data, index=index) | |
tm.assert_frame_equal(result, expected) | |
def test_multiindex_with_na(self): | |
df = DataFrame( | |
[ | |
["A", np.nan, 1.23, 4.56], | |
["A", "G", 1.23, 4.56], | |
["A", "D", 9.87, 10.54], | |
], | |
columns=["pivot_0", "pivot_1", "col_1", "col_2"], | |
).set_index(["pivot_0", "pivot_1"]) | |
df.at[("A", "F"), "col_2"] = 0.0 | |
expected = DataFrame( | |
[ | |
["A", np.nan, 1.23, 4.56], | |
["A", "G", 1.23, 4.56], | |
["A", "D", 9.87, 10.54], | |
["A", "F", np.nan, 0.0], | |
], | |
columns=["pivot_0", "pivot_1", "col_1", "col_2"], | |
).set_index(["pivot_0", "pivot_1"]) | |
tm.assert_frame_equal(df, expected) | |
class TestSorted: | |
"""everything you wanted to test about sorting""" | |
def test_sort_non_lexsorted(self): | |
# degenerate case where we sort but don't | |
# have a satisfying result :< | |
# GH 15797 | |
idx = MultiIndex( | |
[["A", "B", "C"], ["c", "b", "a"]], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]] | |
) | |
df = DataFrame({"col": range(len(idx))}, index=idx, dtype="int64") | |
assert df.index.is_monotonic_increasing is False | |
sorted = df.sort_index() | |
assert sorted.index.is_monotonic_increasing is True | |
expected = DataFrame( | |
{"col": [1, 4, 5, 2]}, | |
index=MultiIndex.from_tuples( | |
[("B", "a"), ("B", "c"), ("C", "a"), ("C", "b")] | |
), | |
dtype="int64", | |
) | |
result = sorted.loc[pd.IndexSlice["B":"C", "a":"c"], :] | |
tm.assert_frame_equal(result, expected) | |