peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/test_take.py
from datetime import datetime | |
import numpy as np | |
import pytest | |
from pandas._libs import iNaT | |
import pandas._testing as tm | |
import pandas.core.algorithms as algos | |
def dtype_fill_out_dtype(request): | |
return request.param | |
class TestTake: | |
def test_1d_fill_nonna(self, dtype_fill_out_dtype): | |
dtype, fill_value, out_dtype = dtype_fill_out_dtype | |
data = np.random.default_rng(2).integers(0, 2, 4).astype(dtype) | |
indexer = [2, 1, 0, -1] | |
result = algos.take_nd(data, indexer, fill_value=fill_value) | |
assert (result[[0, 1, 2]] == data[[2, 1, 0]]).all() | |
assert result[3] == fill_value | |
assert result.dtype == out_dtype | |
indexer = [2, 1, 0, 1] | |
result = algos.take_nd(data, indexer, fill_value=fill_value) | |
assert (result[[0, 1, 2, 3]] == data[indexer]).all() | |
assert result.dtype == dtype | |
def test_2d_fill_nonna(self, dtype_fill_out_dtype): | |
dtype, fill_value, out_dtype = dtype_fill_out_dtype | |
data = np.random.default_rng(2).integers(0, 2, (5, 3)).astype(dtype) | |
indexer = [2, 1, 0, -1] | |
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) | |
assert (result[[0, 1, 2], :] == data[[2, 1, 0], :]).all() | |
assert (result[3, :] == fill_value).all() | |
assert result.dtype == out_dtype | |
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) | |
assert (result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all() | |
assert (result[:, 3] == fill_value).all() | |
assert result.dtype == out_dtype | |
indexer = [2, 1, 0, 1] | |
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) | |
assert (result[[0, 1, 2, 3], :] == data[indexer, :]).all() | |
assert result.dtype == dtype | |
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) | |
assert (result[:, [0, 1, 2, 3]] == data[:, indexer]).all() | |
assert result.dtype == dtype | |
def test_3d_fill_nonna(self, dtype_fill_out_dtype): | |
dtype, fill_value, out_dtype = dtype_fill_out_dtype | |
data = np.random.default_rng(2).integers(0, 2, (5, 4, 3)).astype(dtype) | |
indexer = [2, 1, 0, -1] | |
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) | |
assert (result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all() | |
assert (result[3, :, :] == fill_value).all() | |
assert result.dtype == out_dtype | |
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) | |
assert (result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all() | |
assert (result[:, 3, :] == fill_value).all() | |
assert result.dtype == out_dtype | |
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) | |
assert (result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all() | |
assert (result[:, :, 3] == fill_value).all() | |
assert result.dtype == out_dtype | |
indexer = [2, 1, 0, 1] | |
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) | |
assert (result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all() | |
assert result.dtype == dtype | |
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) | |
assert (result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all() | |
assert result.dtype == dtype | |
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) | |
assert (result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all() | |
assert result.dtype == dtype | |
def test_1d_other_dtypes(self): | |
arr = np.random.default_rng(2).standard_normal(10).astype(np.float32) | |
indexer = [1, 2, 3, -1] | |
result = algos.take_nd(arr, indexer) | |
expected = arr.take(indexer) | |
expected[-1] = np.nan | |
tm.assert_almost_equal(result, expected) | |
def test_2d_other_dtypes(self): | |
arr = np.random.default_rng(2).standard_normal((10, 5)).astype(np.float32) | |
indexer = [1, 2, 3, -1] | |
# axis=0 | |
result = algos.take_nd(arr, indexer, axis=0) | |
expected = arr.take(indexer, axis=0) | |
expected[-1] = np.nan | |
tm.assert_almost_equal(result, expected) | |
# axis=1 | |
result = algos.take_nd(arr, indexer, axis=1) | |
expected = arr.take(indexer, axis=1) | |
expected[:, -1] = np.nan | |
tm.assert_almost_equal(result, expected) | |
def test_1d_bool(self): | |
arr = np.array([0, 1, 0], dtype=bool) | |
result = algos.take_nd(arr, [0, 2, 2, 1]) | |
expected = arr.take([0, 2, 2, 1]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.take_nd(arr, [0, 2, -1]) | |
assert result.dtype == np.object_ | |
def test_2d_bool(self): | |
arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool) | |
result = algos.take_nd(arr, [0, 2, 2, 1]) | |
expected = arr.take([0, 2, 2, 1], axis=0) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.take_nd(arr, [0, 2, 2, 1], axis=1) | |
expected = arr.take([0, 2, 2, 1], axis=1) | |
tm.assert_numpy_array_equal(result, expected) | |
result = algos.take_nd(arr, [0, 2, -1]) | |
assert result.dtype == np.object_ | |
def test_2d_float32(self): | |
arr = np.random.default_rng(2).standard_normal((4, 3)).astype(np.float32) | |
indexer = [0, 2, -1, 1, -1] | |
# axis=0 | |
result = algos.take_nd(arr, indexer, axis=0) | |
expected = arr.take(indexer, axis=0) | |
expected[[2, 4], :] = np.nan | |
tm.assert_almost_equal(result, expected) | |
# axis=1 | |
result = algos.take_nd(arr, indexer, axis=1) | |
expected = arr.take(indexer, axis=1) | |
expected[:, [2, 4]] = np.nan | |
tm.assert_almost_equal(result, expected) | |
def test_2d_datetime64(self): | |
# 2005/01/01 - 2006/01/01 | |
arr = ( | |
np.random.default_rng(2).integers(11_045_376, 11_360_736, (5, 3)) | |
* 100_000_000_000 | |
) | |
arr = arr.view(dtype="datetime64[ns]") | |
indexer = [0, 2, -1, 1, -1] | |
# axis=0 | |
result = algos.take_nd(arr, indexer, axis=0) | |
expected = arr.take(indexer, axis=0) | |
expected.view(np.int64)[[2, 4], :] = iNaT | |
tm.assert_almost_equal(result, expected) | |
result = algos.take_nd(arr, indexer, axis=0, fill_value=datetime(2007, 1, 1)) | |
expected = arr.take(indexer, axis=0) | |
expected[[2, 4], :] = datetime(2007, 1, 1) | |
tm.assert_almost_equal(result, expected) | |
# axis=1 | |
result = algos.take_nd(arr, indexer, axis=1) | |
expected = arr.take(indexer, axis=1) | |
expected.view(np.int64)[:, [2, 4]] = iNaT | |
tm.assert_almost_equal(result, expected) | |
result = algos.take_nd(arr, indexer, axis=1, fill_value=datetime(2007, 1, 1)) | |
expected = arr.take(indexer, axis=1) | |
expected[:, [2, 4]] = datetime(2007, 1, 1) | |
tm.assert_almost_equal(result, expected) | |
def test_take_axis_0(self): | |
arr = np.arange(12).reshape(4, 3) | |
result = algos.take(arr, [0, -1]) | |
expected = np.array([[0, 1, 2], [9, 10, 11]]) | |
tm.assert_numpy_array_equal(result, expected) | |
# allow_fill=True | |
result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0) | |
expected = np.array([[0, 1, 2], [0, 0, 0]]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_take_axis_1(self): | |
arr = np.arange(12).reshape(4, 3) | |
result = algos.take(arr, [0, -1], axis=1) | |
expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]]) | |
tm.assert_numpy_array_equal(result, expected) | |
# allow_fill=True | |
result = algos.take(arr, [0, -1], axis=1, allow_fill=True, fill_value=0) | |
expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]]) | |
tm.assert_numpy_array_equal(result, expected) | |
# GH#26976 make sure we validate along the correct axis | |
with pytest.raises(IndexError, match="indices are out-of-bounds"): | |
algos.take(arr, [0, 3], axis=1, allow_fill=True, fill_value=0) | |
def test_take_non_hashable_fill_value(self): | |
arr = np.array([1, 2, 3]) | |
indexer = np.array([1, -1]) | |
with pytest.raises(ValueError, match="fill_value must be a scalar"): | |
algos.take(arr, indexer, allow_fill=True, fill_value=[1]) | |
# with object dtype it is allowed | |
arr = np.array([1, 2, 3], dtype=object) | |
result = algos.take(arr, indexer, allow_fill=True, fill_value=[1]) | |
expected = np.array([2, [1]], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestExtensionTake: | |
# The take method found in pd.api.extensions | |
def test_bounds_check_large(self): | |
arr = np.array([1, 2]) | |
msg = "indices are out-of-bounds" | |
with pytest.raises(IndexError, match=msg): | |
algos.take(arr, [2, 3], allow_fill=True) | |
msg = "index 2 is out of bounds for( axis 0 with)? size 2" | |
with pytest.raises(IndexError, match=msg): | |
algos.take(arr, [2, 3], allow_fill=False) | |
def test_bounds_check_small(self): | |
arr = np.array([1, 2, 3], dtype=np.int64) | |
indexer = [0, -1, -2] | |
msg = r"'indices' contains values less than allowed \(-2 < -1\)" | |
with pytest.raises(ValueError, match=msg): | |
algos.take(arr, indexer, allow_fill=True) | |
result = algos.take(arr, indexer) | |
expected = np.array([1, 3, 2], dtype=np.int64) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_take_empty(self, allow_fill): | |
arr = np.array([], dtype=np.int64) | |
# empty take is ok | |
result = algos.take(arr, [], allow_fill=allow_fill) | |
tm.assert_numpy_array_equal(arr, result) | |
msg = "|".join( | |
[ | |
"cannot do a non-empty take from an empty axes.", | |
"indices are out-of-bounds", | |
] | |
) | |
with pytest.raises(IndexError, match=msg): | |
algos.take(arr, [0], allow_fill=allow_fill) | |
def test_take_na_empty(self): | |
result = algos.take(np.array([]), [-1, -1], allow_fill=True, fill_value=0.0) | |
expected = np.array([0.0, 0.0]) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_take_coerces_list(self): | |
arr = [1, 2, 3] | |
msg = "take accepting non-standard inputs is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = algos.take(arr, [0, 0]) | |
expected = np.array([1, 1]) | |
tm.assert_numpy_array_equal(result, expected) | |