peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/util
/test_hashing.py
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
period_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.util.hashing import hash_tuples | |
from pandas.util import ( | |
hash_array, | |
hash_pandas_object, | |
) | |
def series(request): | |
return request.param | |
def index(request): | |
return request.param | |
def test_consistency(): | |
# Check that our hash doesn't change because of a mistake | |
# in the actual code; this is the ground truth. | |
result = hash_pandas_object(Index(["foo", "bar", "baz"])) | |
expected = Series( | |
np.array( | |
[3600424527151052760, 1374399572096150070, 477881037637427054], | |
dtype="uint64", | |
), | |
index=["foo", "bar", "baz"], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_hash_array(series): | |
arr = series.values | |
tm.assert_numpy_array_equal(hash_array(arr), hash_array(arr)) | |
def test_hash_array_mixed(dtype): | |
result1 = hash_array(np.array(["3", "4", "All"])) | |
result2 = hash_array(np.array([3, 4, "All"], dtype=dtype)) | |
tm.assert_numpy_array_equal(result1, result2) | |
def test_hash_array_errors(val): | |
msg = "must pass a ndarray-like" | |
with pytest.raises(TypeError, match=msg): | |
hash_array(val) | |
def test_hash_array_index_exception(): | |
# GH42003 TypeError instead of AttributeError | |
obj = pd.DatetimeIndex(["2018-10-28 01:20:00"], tz="Europe/Berlin") | |
msg = "Use hash_pandas_object instead" | |
with pytest.raises(TypeError, match=msg): | |
hash_array(obj) | |
def test_hash_tuples(): | |
tuples = [(1, "one"), (1, "two"), (2, "one")] | |
result = hash_tuples(tuples) | |
expected = hash_pandas_object(MultiIndex.from_tuples(tuples)).values | |
tm.assert_numpy_array_equal(result, expected) | |
# We only need to support MultiIndex and list-of-tuples | |
msg = "|".join(["object is not iterable", "zip argument #1 must support iteration"]) | |
with pytest.raises(TypeError, match=msg): | |
hash_tuples(tuples[0]) | |
def test_hash_tuples_err(val): | |
msg = "must be convertible to a list-of-tuples" | |
with pytest.raises(TypeError, match=msg): | |
hash_tuples(val) | |
def test_multiindex_unique(): | |
mi = MultiIndex.from_tuples([(118, 472), (236, 118), (51, 204), (102, 51)]) | |
assert mi.is_unique is True | |
result = hash_pandas_object(mi) | |
assert result.is_unique is True | |
def test_multiindex_objects(): | |
mi = MultiIndex( | |
levels=[["b", "d", "a"], [1, 2, 3]], | |
codes=[[0, 1, 0, 2], [2, 0, 0, 1]], | |
names=["col1", "col2"], | |
) | |
recons = mi._sort_levels_monotonic() | |
# These are equal. | |
assert mi.equals(recons) | |
assert Index(mi.values).equals(Index(recons.values)) | |
def test_hash_pandas_object(obj, index): | |
a = hash_pandas_object(obj, index=index) | |
b = hash_pandas_object(obj, index=index) | |
tm.assert_series_equal(a, b) | |
def test_hash_pandas_object_diff_index_non_empty(obj): | |
a = hash_pandas_object(obj, index=True) | |
b = hash_pandas_object(obj, index=False) | |
assert not (a == b).all() | |
def test_hash_pandas_index(obj, index): | |
a = hash_pandas_object(obj, index=index) | |
b = hash_pandas_object(obj, index=index) | |
tm.assert_series_equal(a, b) | |
def test_hash_pandas_series(series, index): | |
a = hash_pandas_object(series, index=index) | |
b = hash_pandas_object(series, index=index) | |
tm.assert_series_equal(a, b) | |
def test_hash_pandas_series_diff_index(series): | |
a = hash_pandas_object(series, index=True) | |
b = hash_pandas_object(series, index=False) | |
assert not (a == b).all() | |
def test_hash_pandas_empty_object(obj, index): | |
# These are by-definition the same with | |
# or without the index as the data is empty. | |
a = hash_pandas_object(obj, index=index) | |
b = hash_pandas_object(obj, index=index) | |
tm.assert_series_equal(a, b) | |
def test_categorical_consistency(s1, categorize): | |
# see gh-15143 | |
# | |
# Check that categoricals hash consistent with their values, | |
# not codes. This should work for categoricals of any dtype. | |
s2 = s1.astype("category").cat.set_categories(s1) | |
s3 = s2.cat.set_categories(list(reversed(s1))) | |
# These should all hash identically. | |
h1 = hash_pandas_object(s1, categorize=categorize) | |
h2 = hash_pandas_object(s2, categorize=categorize) | |
h3 = hash_pandas_object(s3, categorize=categorize) | |
tm.assert_series_equal(h1, h2) | |
tm.assert_series_equal(h1, h3) | |
def test_categorical_with_nan_consistency(): | |
c = pd.Categorical.from_codes( | |
[-1, 0, 1, 2, 3, 4], categories=pd.date_range("2012-01-01", periods=5, name="B") | |
) | |
expected = hash_array(c, categorize=False) | |
c = pd.Categorical.from_codes([-1, 0], categories=[pd.Timestamp("2012-01-01")]) | |
result = hash_array(c, categorize=False) | |
assert result[0] in expected | |
assert result[1] in expected | |
def test_pandas_errors(): | |
msg = "Unexpected type for hashing" | |
with pytest.raises(TypeError, match=msg): | |
hash_pandas_object(pd.Timestamp("20130101")) | |
def test_hash_keys(): | |
# Using different hash keys, should have | |
# different hashes for the same data. | |
# | |
# This only matters for object dtypes. | |
obj = Series(list("abc")) | |
a = hash_pandas_object(obj, hash_key="9876543210123456") | |
b = hash_pandas_object(obj, hash_key="9876543210123465") | |
assert (a != b).all() | |
def test_df_hash_keys(): | |
# DataFrame version of the test_hash_keys. | |
# https://github.com/pandas-dev/pandas/issues/41404 | |
obj = DataFrame({"x": np.arange(3), "y": list("abc")}) | |
a = hash_pandas_object(obj, hash_key="9876543210123456") | |
b = hash_pandas_object(obj, hash_key="9876543210123465") | |
assert (a != b).all() | |
def test_df_encoding(): | |
# Check that DataFrame recognizes optional encoding. | |
# https://github.com/pandas-dev/pandas/issues/41404 | |
# https://github.com/pandas-dev/pandas/pull/42049 | |
obj = DataFrame({"x": np.arange(3), "y": list("a+c")}) | |
a = hash_pandas_object(obj, encoding="utf8") | |
b = hash_pandas_object(obj, encoding="utf7") | |
# Note that the "+" is encoded as "+-" in utf-7. | |
assert a[0] == b[0] | |
assert a[1] != b[1] | |
assert a[2] == b[2] | |
def test_invalid_key(): | |
# This only matters for object dtypes. | |
msg = "key should be a 16-byte string encoded" | |
with pytest.raises(ValueError, match=msg): | |
hash_pandas_object(Series(list("abc")), hash_key="foo") | |
def test_already_encoded(index): | |
# If already encoded, then ok. | |
obj = Series(list("abc")).str.encode("utf8") | |
a = hash_pandas_object(obj, index=index) | |
b = hash_pandas_object(obj, index=index) | |
tm.assert_series_equal(a, b) | |
def test_alternate_encoding(index): | |
obj = Series(list("abc")) | |
a = hash_pandas_object(obj, index=index) | |
b = hash_pandas_object(obj, index=index) | |
tm.assert_series_equal(a, b) | |
def test_same_len_hash_collisions(l_exp, l_add): | |
length = 2 ** (l_exp + 8) + l_add | |
idx = np.array([str(i) for i in range(length)], dtype=object) | |
result = hash_array(idx, "utf8") | |
assert not result[0] == result[1] | |
def test_hash_collisions(): | |
# Hash collisions are bad. | |
# | |
# https://github.com/pandas-dev/pandas/issues/14711#issuecomment-264885726 | |
hashes = [ | |
"Ingrid-9Z9fKIZmkO7i7Cn51Li34pJm44fgX6DYGBNj3VPlOH50m7HnBlPxfIwFMrcNJNMP6PSgLmwWnInciMWrCSAlLEvt7JkJl4IxiMrVbXSa8ZQoVaq5xoQPjltuJEfwdNlO6jo8qRRHvD8sBEBMQASrRa6TsdaPTPCBo3nwIBpE7YzzmyH0vMBhjQZLx1aCT7faSEx7PgFxQhHdKFWROcysamgy9iVj8DO2Fmwg1NNl93rIAqC3mdqfrCxrzfvIY8aJdzin2cHVzy3QUJxZgHvtUtOLxoqnUHsYbNTeq0xcLXpTZEZCxD4PGubIuCNf32c33M7HFsnjWSEjE2yVdWKhmSVodyF8hFYVmhYnMCztQnJrt3O8ZvVRXd5IKwlLexiSp4h888w7SzAIcKgc3g5XQJf6MlSMftDXm9lIsE1mJNiJEv6uY6pgvC3fUPhatlR5JPpVAHNSbSEE73MBzJrhCAbOLXQumyOXigZuPoME7QgJcBalliQol7YZ9", | |
"Tim-b9MddTxOWW2AT1Py6vtVbZwGAmYCjbp89p8mxsiFoVX4FyDOF3wFiAkyQTUgwg9sVqVYOZo09Dh1AzhFHbgij52ylF0SEwgzjzHH8TGY8Lypart4p4onnDoDvVMBa0kdthVGKl6K0BDVGzyOXPXKpmnMF1H6rJzqHJ0HywfwS4XYpVwlAkoeNsiicHkJUFdUAhG229INzvIAiJuAHeJDUoyO4DCBqtoZ5TDend6TK7Y914yHlfH3g1WZu5LksKv68VQHJriWFYusW5e6ZZ6dKaMjTwEGuRgdT66iU5nqWTHRH8WSzpXoCFwGcTOwyuqPSe0fTe21DVtJn1FKj9F9nEnR9xOvJUO7E0piCIF4Ad9yAIDY4DBimpsTfKXCu1vdHpKYerzbndfuFe5AhfMduLYZJi5iAw8qKSwR5h86ttXV0Mc0QmXz8dsRvDgxjXSmupPxBggdlqUlC828hXiTPD7am0yETBV0F3bEtvPiNJfremszcV8NcqAoARMe", | |
] | |
# These should be different. | |
result1 = hash_array(np.asarray(hashes[0:1], dtype=object), "utf8") | |
expected1 = np.array([14963968704024874985], dtype=np.uint64) | |
tm.assert_numpy_array_equal(result1, expected1) | |
result2 = hash_array(np.asarray(hashes[1:2], dtype=object), "utf8") | |
expected2 = np.array([16428432627716348016], dtype=np.uint64) | |
tm.assert_numpy_array_equal(result2, expected2) | |
result = hash_array(np.asarray(hashes, dtype=object), "utf8") | |
tm.assert_numpy_array_equal(result, np.concatenate([expected1, expected2], axis=0)) | |
def test_hash_with_tuple(data, result_data): | |
# GH#28969 array containing a tuple raises on call to arr.astype(str) | |
# apparently a numpy bug github.com/numpy/numpy/issues/9441 | |
df = DataFrame({"data": data}) | |
result = hash_pandas_object(df) | |
expected = Series(result_data, dtype=np.uint64) | |
tm.assert_series_equal(result, expected) | |
def test_hashable_tuple_args(): | |
# require that the elements of such tuples are themselves hashable | |
df3 = DataFrame( | |
{ | |
"data": [ | |
( | |
1, | |
[], | |
), | |
( | |
2, | |
{}, | |
), | |
] | |
} | |
) | |
with pytest.raises(TypeError, match="unhashable type: 'list'"): | |
hash_pandas_object(df3) | |
def test_hash_object_none_key(): | |
# https://github.com/pandas-dev/pandas/issues/30887 | |
result = pd.util.hash_pandas_object(Series(["a", "b"]), hash_key=None) | |
expected = Series([4578374827886788867, 17338122309987883691], dtype="uint64") | |
tm.assert_series_equal(result, expected) | |