peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/window
/test_api.py
import numpy as np | |
import pytest | |
from pandas.errors import ( | |
DataError, | |
SpecificationError, | |
) | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Period, | |
Series, | |
Timestamp, | |
concat, | |
date_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
def test_getitem(step): | |
frame = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | |
r = frame.rolling(window=5, step=step) | |
tm.assert_index_equal(r._selected_obj.columns, frame[::step].columns) | |
r = frame.rolling(window=5, step=step)[1] | |
assert r._selected_obj.name == frame[::step].columns[1] | |
# technically this is allowed | |
r = frame.rolling(window=5, step=step)[1, 3] | |
tm.assert_index_equal(r._selected_obj.columns, frame[::step].columns[[1, 3]]) | |
r = frame.rolling(window=5, step=step)[[1, 3]] | |
tm.assert_index_equal(r._selected_obj.columns, frame[::step].columns[[1, 3]]) | |
def test_select_bad_cols(): | |
df = DataFrame([[1, 2]], columns=["A", "B"]) | |
g = df.rolling(window=5) | |
with pytest.raises(KeyError, match="Columns not found: 'C'"): | |
g[["C"]] | |
with pytest.raises(KeyError, match="^[^A]+$"): | |
# A should not be referenced as a bad column... | |
# will have to rethink regex if you change message! | |
g[["A", "C"]] | |
def test_attribute_access(): | |
df = DataFrame([[1, 2]], columns=["A", "B"]) | |
r = df.rolling(window=5) | |
tm.assert_series_equal(r.A.sum(), r["A"].sum()) | |
msg = "'Rolling' object has no attribute 'F'" | |
with pytest.raises(AttributeError, match=msg): | |
r.F | |
def tests_skip_nuisance(step): | |
df = DataFrame({"A": range(5), "B": range(5, 10), "C": "foo"}) | |
r = df.rolling(window=3, step=step) | |
result = r[["A", "B"]].sum() | |
expected = DataFrame( | |
{"A": [np.nan, np.nan, 3, 6, 9], "B": [np.nan, np.nan, 18, 21, 24]}, | |
columns=list("AB"), | |
)[::step] | |
tm.assert_frame_equal(result, expected) | |
def test_sum_object_str_raises(step): | |
df = DataFrame({"A": range(5), "B": range(5, 10), "C": "foo"}) | |
r = df.rolling(window=3, step=step) | |
with pytest.raises( | |
DataError, match="Cannot aggregate non-numeric type: object|string" | |
): | |
# GH#42738, enforced in 2.0 | |
r.sum() | |
def test_agg(step): | |
df = DataFrame({"A": range(5), "B": range(0, 10, 2)}) | |
r = df.rolling(window=3, step=step) | |
a_mean = r["A"].mean() | |
a_std = r["A"].std() | |
a_sum = r["A"].sum() | |
b_mean = r["B"].mean() | |
b_std = r["B"].std() | |
with tm.assert_produces_warning(FutureWarning, match="using Rolling.[mean|std]"): | |
result = r.aggregate([np.mean, np.std]) | |
expected = concat([a_mean, a_std, b_mean, b_std], axis=1) | |
expected.columns = MultiIndex.from_product([["A", "B"], ["mean", "std"]]) | |
tm.assert_frame_equal(result, expected) | |
with tm.assert_produces_warning(FutureWarning, match="using Rolling.[mean|std]"): | |
result = r.aggregate({"A": np.mean, "B": np.std}) | |
expected = concat([a_mean, b_std], axis=1) | |
tm.assert_frame_equal(result, expected, check_like=True) | |
result = r.aggregate({"A": ["mean", "std"]}) | |
expected = concat([a_mean, a_std], axis=1) | |
expected.columns = MultiIndex.from_tuples([("A", "mean"), ("A", "std")]) | |
tm.assert_frame_equal(result, expected) | |
result = r["A"].aggregate(["mean", "sum"]) | |
expected = concat([a_mean, a_sum], axis=1) | |
expected.columns = ["mean", "sum"] | |
tm.assert_frame_equal(result, expected) | |
msg = "nested renamer is not supported" | |
with pytest.raises(SpecificationError, match=msg): | |
# using a dict with renaming | |
r.aggregate({"A": {"mean": "mean", "sum": "sum"}}) | |
with pytest.raises(SpecificationError, match=msg): | |
r.aggregate( | |
{"A": {"mean": "mean", "sum": "sum"}, "B": {"mean2": "mean", "sum2": "sum"}} | |
) | |
result = r.aggregate({"A": ["mean", "std"], "B": ["mean", "std"]}) | |
expected = concat([a_mean, a_std, b_mean, b_std], axis=1) | |
exp_cols = [("A", "mean"), ("A", "std"), ("B", "mean"), ("B", "std")] | |
expected.columns = MultiIndex.from_tuples(exp_cols) | |
tm.assert_frame_equal(result, expected, check_like=True) | |
def test_multi_axis_1_raises(func): | |
# GH#46904 | |
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5], "c": [6, 7, 8]}) | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
r = df.rolling(window=3, axis=1) | |
with pytest.raises(NotImplementedError, match="axis other than 0 is not supported"): | |
r.agg(func) | |
def test_agg_apply(raw): | |
# passed lambda | |
df = DataFrame({"A": range(5), "B": range(0, 10, 2)}) | |
r = df.rolling(window=3) | |
a_sum = r["A"].sum() | |
with tm.assert_produces_warning(FutureWarning, match="using Rolling.[sum|std]"): | |
result = r.agg({"A": np.sum, "B": lambda x: np.std(x, ddof=1)}) | |
rcustom = r["B"].apply(lambda x: np.std(x, ddof=1), raw=raw) | |
expected = concat([a_sum, rcustom], axis=1) | |
tm.assert_frame_equal(result, expected, check_like=True) | |
def test_agg_consistency(step): | |
df = DataFrame({"A": range(5), "B": range(0, 10, 2)}) | |
r = df.rolling(window=3, step=step) | |
with tm.assert_produces_warning(FutureWarning, match="using Rolling.[sum|mean]"): | |
result = r.agg([np.sum, np.mean]).columns | |
expected = MultiIndex.from_product([list("AB"), ["sum", "mean"]]) | |
tm.assert_index_equal(result, expected) | |
with tm.assert_produces_warning(FutureWarning, match="using Rolling.[sum|mean]"): | |
result = r["A"].agg([np.sum, np.mean]).columns | |
expected = Index(["sum", "mean"]) | |
tm.assert_index_equal(result, expected) | |
with tm.assert_produces_warning(FutureWarning, match="using Rolling.[sum|mean]"): | |
result = r.agg({"A": [np.sum, np.mean]}).columns | |
expected = MultiIndex.from_tuples([("A", "sum"), ("A", "mean")]) | |
tm.assert_index_equal(result, expected) | |
def test_agg_nested_dicts(): | |
# API change for disallowing these types of nested dicts | |
df = DataFrame({"A": range(5), "B": range(0, 10, 2)}) | |
r = df.rolling(window=3) | |
msg = "nested renamer is not supported" | |
with pytest.raises(SpecificationError, match=msg): | |
r.aggregate({"r1": {"A": ["mean", "sum"]}, "r2": {"B": ["mean", "sum"]}}) | |
expected = concat( | |
[r["A"].mean(), r["A"].std(), r["B"].mean(), r["B"].std()], axis=1 | |
) | |
expected.columns = MultiIndex.from_tuples( | |
[("ra", "mean"), ("ra", "std"), ("rb", "mean"), ("rb", "std")] | |
) | |
with pytest.raises(SpecificationError, match=msg): | |
r[["A", "B"]].agg({"A": {"ra": ["mean", "std"]}, "B": {"rb": ["mean", "std"]}}) | |
with pytest.raises(SpecificationError, match=msg): | |
r.agg({"A": {"ra": ["mean", "std"]}, "B": {"rb": ["mean", "std"]}}) | |
def test_count_nonnumeric_types(step): | |
# GH12541 | |
cols = [ | |
"int", | |
"float", | |
"string", | |
"datetime", | |
"timedelta", | |
"periods", | |
"fl_inf", | |
"fl_nan", | |
"str_nan", | |
"dt_nat", | |
"periods_nat", | |
] | |
dt_nat_col = [Timestamp("20170101"), Timestamp("20170203"), Timestamp(None)] | |
df = DataFrame( | |
{ | |
"int": [1, 2, 3], | |
"float": [4.0, 5.0, 6.0], | |
"string": list("abc"), | |
"datetime": date_range("20170101", periods=3), | |
"timedelta": timedelta_range("1 s", periods=3, freq="s"), | |
"periods": [ | |
Period("2012-01"), | |
Period("2012-02"), | |
Period("2012-03"), | |
], | |
"fl_inf": [1.0, 2.0, np.inf], | |
"fl_nan": [1.0, 2.0, np.nan], | |
"str_nan": ["aa", "bb", np.nan], | |
"dt_nat": dt_nat_col, | |
"periods_nat": [ | |
Period("2012-01"), | |
Period("2012-02"), | |
Period(None), | |
], | |
}, | |
columns=cols, | |
) | |
expected = DataFrame( | |
{ | |
"int": [1.0, 2.0, 2.0], | |
"float": [1.0, 2.0, 2.0], | |
"string": [1.0, 2.0, 2.0], | |
"datetime": [1.0, 2.0, 2.0], | |
"timedelta": [1.0, 2.0, 2.0], | |
"periods": [1.0, 2.0, 2.0], | |
"fl_inf": [1.0, 2.0, 2.0], | |
"fl_nan": [1.0, 2.0, 1.0], | |
"str_nan": [1.0, 2.0, 1.0], | |
"dt_nat": [1.0, 2.0, 1.0], | |
"periods_nat": [1.0, 2.0, 1.0], | |
}, | |
columns=cols, | |
)[::step] | |
result = df.rolling(window=2, min_periods=0, step=step).count() | |
tm.assert_frame_equal(result, expected) | |
result = df.rolling(1, min_periods=0, step=step).count() | |
expected = df.notna().astype(float)[::step] | |
tm.assert_frame_equal(result, expected) | |
def test_preserve_metadata(): | |
# GH 10565 | |
s = Series(np.arange(100), name="foo") | |
s2 = s.rolling(30).sum() | |
s3 = s.rolling(20).sum() | |
assert s2.name == "foo" | |
assert s3.name == "foo" | |
def test_multiple_agg_funcs(func, window_size, expected_vals): | |
# GH 15072 | |
df = DataFrame( | |
[ | |
["A", 10, 20], | |
["A", 20, 30], | |
["A", 30, 40], | |
["B", 10, 30], | |
["B", 30, 40], | |
["B", 40, 80], | |
["B", 80, 90], | |
], | |
columns=["stock", "low", "high"], | |
) | |
f = getattr(df.groupby("stock"), func) | |
if window_size: | |
window = f(window_size) | |
else: | |
window = f() | |
index = MultiIndex.from_tuples( | |
[("A", 0), ("A", 1), ("A", 2), ("B", 3), ("B", 4), ("B", 5), ("B", 6)], | |
names=["stock", None], | |
) | |
columns = MultiIndex.from_tuples( | |
[("low", "mean"), ("low", "max"), ("high", "mean"), ("high", "min")] | |
) | |
expected = DataFrame(expected_vals, index=index, columns=columns) | |
result = window.agg({"low": ["mean", "max"], "high": ["mean", "min"]}) | |
tm.assert_frame_equal(result, expected) | |
def test_dont_modify_attributes_after_methods( | |
arithmetic_win_operators, closed, center, min_periods, step | |
): | |
# GH 39554 | |
roll_obj = Series(range(1)).rolling( | |
1, center=center, closed=closed, min_periods=min_periods, step=step | |
) | |
expected = {attr: getattr(roll_obj, attr) for attr in roll_obj._attributes} | |
getattr(roll_obj, arithmetic_win_operators)() | |
result = {attr: getattr(roll_obj, attr) for attr in roll_obj._attributes} | |
assert result == expected | |
def test_centered_axis_validation(step): | |
# ok | |
msg = "The 'axis' keyword in Series.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
Series(np.ones(10)).rolling(window=3, center=True, axis=0, step=step).mean() | |
# bad axis | |
msg = "No axis named 1 for object type Series" | |
with pytest.raises(ValueError, match=msg): | |
Series(np.ones(10)).rolling(window=3, center=True, axis=1, step=step).mean() | |
# ok ok | |
df = DataFrame(np.ones((10, 10))) | |
msg = "The 'axis' keyword in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
df.rolling(window=3, center=True, axis=0, step=step).mean() | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
df.rolling(window=3, center=True, axis=1, step=step).mean() | |
# bad axis | |
msg = "No axis named 2 for object type DataFrame" | |
with pytest.raises(ValueError, match=msg): | |
(df.rolling(window=3, center=True, axis=2, step=step).mean()) | |
def test_rolling_min_min_periods(step): | |
a = Series([1, 2, 3, 4, 5]) | |
result = a.rolling(window=100, min_periods=1, step=step).min() | |
expected = Series(np.ones(len(a)))[::step] | |
tm.assert_series_equal(result, expected) | |
msg = "min_periods 5 must be <= window 3" | |
with pytest.raises(ValueError, match=msg): | |
Series([1, 2, 3]).rolling(window=3, min_periods=5, step=step).min() | |
def test_rolling_max_min_periods(step): | |
a = Series([1, 2, 3, 4, 5], dtype=np.float64) | |
result = a.rolling(window=100, min_periods=1, step=step).max() | |
expected = a[::step] | |
tm.assert_almost_equal(result, expected) | |
msg = "min_periods 5 must be <= window 3" | |
with pytest.raises(ValueError, match=msg): | |
Series([1, 2, 3]).rolling(window=3, min_periods=5, step=step).max() | |