peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/reshape_utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import re | |
import torch | |
from collections import OrderedDict | |
from .constants import (ZERO_FILE_PREFIX, FP16_ZERO_FILE_PREFIX, BF16_ZERO_FILE_PREFIX, MODEL_FILE_PREFIX) | |
def basic_folder_validation(dir): | |
assert os.path.exists(dir), f'{dir} path does not exist' | |
assert os.path.isdir(dir), f'{dir} is not a folder' | |
def get_files_with_prefix(all_files, prefix): | |
file_list = [] | |
for file_path in all_files: | |
_, fname = os.path.split(file_path) | |
if fname.startswith(prefix): | |
file_list.append(file_path) | |
return sorted(file_list) | |
def validate_files(file_list): | |
for file in file_list: | |
if not os.path.isfile(file): | |
print(f'Error: {file} is not existent') | |
def get_files(dir): | |
file_list = [] | |
for root, _, files in os.walk(dir): | |
for file in files: | |
file_list.append(os.path.join(root, file)) | |
return file_list | |
def sort_zero_files(files, prefix): | |
pattern = f"{prefix}([0-9]+)_{MODEL_FILE_PREFIX}([0-9]+)" | |
rank_pairs = [] | |
for f in files: | |
m = re.search(pattern, f) | |
if m: | |
dp_rank = int(m.group(1)) | |
mp_rank = int(m.group(2)) | |
rank_pairs.append((dp_rank, mp_rank, f)) | |
else: | |
raise ValueError(f"Cannot parse dp_rank and mp_rank from {f}") | |
sorted_files = sorted(rank_pairs, key=lambda x: (x[0], x[1])) | |
return [f for _, _, f in sorted_files] | |
def get_zero_files(dir): | |
file_list = get_files(dir) | |
for prefix in [ZERO_FILE_PREFIX, FP16_ZERO_FILE_PREFIX, BF16_ZERO_FILE_PREFIX]: | |
zero_files = get_files_with_prefix(file_list, prefix) | |
if len(zero_files) > 0: | |
return sort_zero_files(zero_files, prefix) | |
return [] | |
def partition_data(data_list, num_partitions): | |
num_elems = len(data_list) | |
assert num_elems % num_partitions == 0 | |
partition_size = num_elems // num_partitions | |
partitions_list = [data_list[i:i + partition_size] for i in range(0, num_elems, partition_size)] | |
return partitions_list | |
def _key_list_to_string(key_list): | |
return '.'.join(key_list) | |
def merge_state_dict(dict_a, dict_b, key_list): | |
merged_dict = type(dict_a)({}) | |
for key, value in dict_b.items(): | |
if key in dict_a.keys(): | |
merged_dict[key] = merge_state(dict_a[key], dict_b[key], [str(key)]) | |
else: | |
merged_dict[key] = value | |
return merged_dict | |
def merge_state_list(list_a, list_b, key_list): | |
if len(list_a) != len(list_b): | |
print(f'{_key_list_to_string(key_list)}') | |
raise ValueError(f'Cannot merge lists of different lengths, a = {len(list_a)} b = {len(list_b)}') | |
return [merge_state(a, b, key_list) for a, b in zip(list_a, list_b)] | |
def merge_state(state_a, state_b, key_list=[]): | |
if type(state_a) != type(state_b): | |
key_list_string = _key_list_to_string(key_list) | |
print(f'key_list = {key_list_string}') | |
raise ValueError(f'Cannot merge two states of types {type(state_a)} and type {type(state_b)}') | |
if type(state_a) in (dict, OrderedDict): | |
return merge_state_dict(state_a, state_b, key_list) | |
elif type(state_a) in (list, tuple): | |
return type(state_a)(merge_state_list(state_a, state_b, key_list)) | |
elif torch.is_tensor(state_a): | |
return torch.cat([state_a, state_b], 0) | |
else: | |
return state_a | |