peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/zero_checkpoint.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from .constants import (BASE_OPTIMIZER_STATE, GROUP_PADDINGS, OPTIMIZER_STATE_DICT, PARTITION_COUNT) | |
from .reshape_utils import (basic_folder_validation, get_zero_files, merge_state) | |
from .reshape_3d_utils import (model_3d_desc, get_model_3d_descriptor) | |
GROUP_STATE_KEY = 'state' | |
class ZeROCheckpoint(object): | |
def __init__(self, dir): | |
basic_folder_validation(dir) | |
self.dir = dir | |
self.file_list = get_zero_files(dir) | |
self.num_files = len(self.file_list) | |
assert self.num_files > 0, f'No ZeRO files found in {dir}' | |
self.src_3d = get_model_3d_descriptor(dir) | |
self.target_3d = model_3d_desc(pp_degree=self.src_3d.pp_degree, | |
tp_degree=self.src_3d.tp_degree, | |
dp_degree=self.src_3d.dp_degree) | |
self._3d_file_map = self.src_3d.reshape(self.target_3d) | |
def get_src_world_size(self): | |
return self.src_3d.world_size() | |
def get_src_tp_degree(self): | |
return self.src_3d.tp_degree | |
def get_src_pp_degree(self): | |
return self.src_3d.pp_degree | |
def get_src_dp_degree(self): | |
return self.src_3d.dp_degree | |
def get_file_indices_for_rank(self, pp_index, tp_index, dp_index): | |
assert dp_index < len(self._3d_file_map), f'DP index {dp_index} >= DP degree {len(self._3d_file_map)}' | |
dp_2d_map = self._3d_file_map[dp_index] | |
return dp_2d_map.get_data(pp_index, tp_index) | |
def get_files_for_rank(self, pp_index, tp_index, dp_index): | |
file_idx_list = self.get_file_indices_for_rank(pp_index, tp_index, dp_index) | |
return [self.file_list[idx] for idx in file_idx_list] | |
def get_state_for_rank(self, pp_index, tp_index, dp_index, keys_to_ignore=[], strip_tensor_paddings=True): | |
state_file_list = self.get_files_for_rank(pp_index, tp_index, dp_index) | |
merged_sd = None | |
for state_file in state_file_list: | |
sd = torch.load(state_file, map_location=torch.device('cpu')) | |
for key in keys_to_ignore: | |
sd.pop(key, None) | |
if strip_tensor_paddings: | |
self._strip_tensor_paddings(sd) | |
if merged_sd is None: | |
merged_sd = sd | |
else: | |
merged_sd = merge_state(merged_sd, sd) | |
self._update_partition_count(merged_sd) | |
if strip_tensor_paddings: | |
self._clear_group_paddings(merged_sd) | |
return merged_sd | |
def print_3d_index_map(self, tag=None): | |
if tag: | |
print(f'3D index map: {tag}') | |
for dp_index, _2d_map in enumerate(self._3d_file_map): | |
_2d_map.print_data(f'dp = {dp_index}') | |
def print_3d_file_map(self, tag=None): | |
if tag: | |
print(f'3D file map: {tag}') | |
for dp_index, _2d_map in enumerate(self._3d_file_map): | |
for pp_index in _2d_map.pp_degree: | |
for tp_index in _2d_map.tp_degree: | |
file_index_list = _2d_map.get_data(pp_index, tp_index) | |
file_list = [self.file_list[idx] for idx in file_index_list] | |
print(f'{pp_index}, {tp_index}, {dp_index} => {file_list}') | |
def reshape(self, target_3d_desc: model_3d_desc): | |
self.target_3d = target_3d_desc | |
self._3d_file_map = self.src_3d.reshape(self.target_3d) | |
def _strip_tensor_paddings(self, sd): | |
param_group_states = self._get_param_group_states(sd) | |
if param_group_states is None: | |
return | |
group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS) | |
if group_paddings is None: | |
return | |
for key, group_state in param_group_states.items(): | |
if group_paddings[key] == 0: | |
continue | |
for state_name, state_value in group_state.items(): | |
if state_name != "step" and torch.is_tensor(state_value): | |
raw_length = state_value.numel() - group_paddings[key] | |
group_state[state_name] = torch.narrow(state_value, 0, 0, raw_length).clone() | |
else: | |
group_state[state_name] = state_value | |
def _clear_group_paddings(self, sd): | |
group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS) | |
if group_paddings: | |
num_groups = len(group_paddings) | |
sd[OPTIMIZER_STATE_DICT][GROUP_PADDINGS] = [0] * num_groups | |
def _get_optimizer_state(self, sd, state_key): | |
optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None) | |
if optimizer_state is None: | |
return None | |
return optimizer_state.get(state_key, None) | |
def _get_param_group_states(self, sd): | |
optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None) | |
if optimizer_state is None: | |
return None | |
base_optimizer_state = optimizer_state.get(BASE_OPTIMIZER_STATE, None) | |
if base_optimizer_state is None: | |
return None | |
return base_optimizer_state.get(GROUP_STATE_KEY, None) | |
def _update_partition_count(self, sd): | |
partition_counts = self._get_optimizer_state(sd, PARTITION_COUNT) | |
if partition_counts: | |
num_groups = len(partition_counts) | |
sd[OPTIMIZER_STATE_DICT][PARTITION_COUNT] = [self.target_3d.dp_degree] * num_groups | |