applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
raw
history blame
36 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
import math
from torch import nn
from torch.nn import init
import deepspeed.comm as dist
from .utils import TopKBinarizer, SymQuantizer, AsymQuantizer, TernaryQuantizer, BinaryQuantizer
from deepspeed.utils import logger
g_mpu = None
class QuantAct(nn.Module):
"""
Class to quantize given activations. Note that when using this function, the input activation quantization range will be fixed for all
tokens/images for inference. This generally will affect some accuracy but achieve better latency performance.
Parameters:
----------
act_range_momentum : float, default 0.95
Momentum for updating the activation quantization range.
quant_mode : str, default 'symmetric'
"""
def __init__(self, act_range_momentum=0.95, quant_mode='symmetric'):
super(QuantAct, self).__init__()
self.act_range_momentum = act_range_momentum
self.quant_mode = quant_mode
if quant_mode == 'symmetric':
self.act_function = SymQuantizer.apply
else:
self.act_function = AsymQuantizer.apply
self.register_buffer('x_min_max', torch.zeros(2))
def forward(self, x, num_bits, *args):
"""
x: the activation that we need to quantize
num_bits: the number of bits we need to quantize the activation to
*args: some extra arguments that are useless but needed for align with the interface of other quantization functions
"""
if self.training:
x_min = x.data.min()
x_max = x.data.max()
# Initialization
if self.x_min_max[0] == self.x_min_max[1]:
self.x_min_max[0] = x_min
self.x_min_max[1] = x_max
# if do not need momentum, please set self.act_range_momentum = 0
self.x_min_max[0] = self.x_min_max[0] * self.act_range_momentum + x_min * (1 - self.act_range_momentum)
self.x_min_max[1] = self.x_min_max[1] * self.act_range_momentum + x_max * (1 - self.act_range_momentum)
x_q = self.act_function(x, num_bits, self.x_min_max[0], self.x_min_max[1])
return x_q
class Embedding_Compress(nn.Embedding):
def __init__(self, *kargs):
super(Embedding_Compress, self).__init__(*kargs)
self.weight.start_bits = None
self.weight.target_bits = None
self.weight.q_period = None
self.weight_quantization_enabled_in_forward = False
self.weight_quantization_enabled = False
def extra_repr(self):
return 'num_embeddings={}, embedding_dim={}, weight_quantization={}'.format(
self.num_embeddings, self.embedding_dim, self.weight.target_bits)
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
weight_quantization_enabled_in_forward, quantization_type, num_groups):
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = quantization_period
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
if self.weight_quantization_enabled_in_forward:
logger.warning(
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
)
if self.weight.target_bits >= 3:
if quantization_type == 'symmetric':
self.weight_quantizer = SymQuantizer.apply
else:
self.weight_quantizer = AsymQuantizer.apply
elif self.weight.target_bits == 2:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for ternary weight quantization'
self.weight_quantizer = TernaryQuantizer.apply
elif self.weight.target_bits == 1:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for binary weight quantization'
self.weight_quantizer = BinaryQuantizer.apply
# for embedding, we always use token-wise quantization
self.weight_quantize_num_groups = self.weight.size(0)
def fix_weight_quantization(self):
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups).data
self.weight_quantization_enabled_in_forward = False
return None
def forward(self, input):
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups)
else:
weight = self.weight
out = nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type,
self.scale_grad_by_freq, self.sparse)
return out
class LinearLayer_Compress(nn.Linear):
"""
Linear layer with compression.
"""
def __init__(self, *kargs, bias=True):
super(LinearLayer_Compress, self).__init__(*kargs, bias=bias)
self.sparse_pruning_method = None
self.row_pruning_method = None
self.head_pruning_method = None
self.activation_quantization_method = None
self.weight.start_bits = None
self.weight.target_bits = None
self.weight.q_period = None
self.weight_quantization_enabled_in_forward = False
self.weight_quantization_enabled = False
self.sparse_pruning_enabled = False
self.row_pruning_enabled = False
self.head_pruning_enabled = False
self.activation_quantization_enabled = False
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}, sparse pruning={}, row pruning={}, head pruning={}, activation quantization={}, weight_quantization={}'.format(
self.in_features, self.out_features, self.bias is not None, self.sparse_pruning_method is not None, \
self.row_pruning_method is not None, self.head_pruning_method is not None, self.activation_quantization_method is not None, self.weight.target_bits)
def enable_sparse_pruning(self, ratio, method):
# Here, we support two cases: L1 norm based pruning and topk based pruning
self.sparse_pruning_ratio = ratio
self.sparse_pruning_method = method
if method == 'l1':
weight_norm = torch.abs(self.weight.data)
mask = TopKBinarizer.apply(weight_norm, self.sparse_pruning_ratio, False)
mask = mask.view(self.weight.size())
mask = mask.to(self.weight.device)
elif method == 'topk':
self.sparse_mask_scores = nn.Parameter(torch.Tensor(self.weight.size()))
self.sparse_mask_scores.data = self.sparse_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.sparse_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('sparse_pruning_mask', mask)
def enable_row_pruning(self, ratio, method):
# Here, we support two cases: L1 norm based pruning and topk based pruning
self.row_pruning_ratio = ratio
self.row_pruning_method = method
if method == 'l1':
# compute the l1 norm of each column
weight_norm = torch.linalg.norm(self.weight.data, ord=1, dim=1)
mask = TopKBinarizer.apply(weight_norm, self.row_pruning_ratio, False)
mask = mask.view(-1, 1)
mask = mask.to(self.weight.device)
elif method == 'topk':
self.row_mask_scores = nn.Parameter(torch.Tensor(self.weight.size(0), 1))
self.row_mask_scores.data = self.row_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.row_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('row_pruning_mask', mask)
def enable_head_pruning(self, ratio, method, num_heads):
# Here, we support only topk based pruning
self.num_heads = num_heads
self.head_pruning_ratio = ratio
self.head_pruning_method = method
if method not in ['topk']:
raise NotImplementedError
else:
self.head_pruning_ratio = ratio
self.head_pruning_scores = nn.Parameter(torch.Tensor(1,
self.num_heads)) # we apply the pruning to O matrix
self.head_pruning_scores.data = self.head_pruning_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.head_pruning_scores, a=math.sqrt(5))
def fix_sparse_pruning_helper(self):
mask = self.get_mask(pruning_type='sparse')
self.weight.data = self.weight.data * mask
del self.sparse_pruning_mask
if self.sparse_pruning_method == 'topk':
del self.sparse_mask_scores
self.sparse_pruning_method = None
self.sparse_pruning_enabled = False
return None
def fix_row_col_pruning_helper(self, mask=None, dim_reduction=False):
# This function is used for row/col pruning
# particularly, if we have two back-to-back layers, F1 and F2; when
# we remove rows from F1, we also need to remove columns from F2
# However, if we only have one layer, F1, then we only need to mask pruned
# rows as 0 in F1
if mask is None:
mask = self.get_mask(pruning_type='row').bool()
if dim_reduction:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[mask.view(-1), :])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
if self.bias is not None:
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
self.out_features = self.weight.size(0)
else:
self.weight.data = self.weight.data * mask.view(-1, 1)
if self.bias is not None:
self.bias.data = self.bias.data * mask.view(-1)
del self.row_pruning_mask
if self.row_pruning_method == 'topk':
del self.row_mask_scores
self.row_pruning_method = None
else:
# this is generally for column pruning
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[:, mask.view(-1)])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
self.in_features = self.weight.size(1)
mask = None
self.row_pruning_enabled = False
return mask
def fix_head_pruning_helper(self, mask=None, num_heads=None, dim_reduction=False):
# similar as row/col pruning, head pruning also needs to prune QKV which is associated with O matrix
num_heads = num_heads if num_heads else self.num_heads
if mask is None:
if self.head_pruning_method == 'topk':
mask = self.get_mask(pruning_type='head').bool()
if dim_reduction:
shape = self.weight.size(0)
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data.t().reshape(num_heads,
-1)[mask.view(-1), :].reshape(-1,
shape).t())
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
else:
shape = self.weight.size()
self.weight.data = (self.weight.data.t().reshape(self.num_heads, -1) * mask.view(-1, 1)).reshape(
shape[1], shape[0]).t()
if self.head_pruning_method == 'topk':
del self.head_pruning_scores
self.head_pruning_method = None
else:
raise NotImplementedError
else:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
shape = self.weight.size(1)
self.weight = nn.Parameter(self.weight.data.reshape(num_heads, -1)[mask.view(-1), :].reshape(-1, shape))
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
if self.bias is not None:
self.bias = nn.Parameter(self.bias.data.reshape(num_heads, -1)[mask.view(-1), :].reshape(-1))
self.head_pruning_enabled = False
return mask
def get_mask(self, pruning_type='row'):
if pruning_type == 'sparse':
if self.sparse_pruning_method == 'l1':
return self.sparse_pruning_mask.to(self.weight.device)
elif self.sparse_pruning_method == 'topk':
return TopKBinarizer.apply(self.sparse_mask_scores, self.sparse_pruning_ratio, False)
else:
raise NotImplementedError
if pruning_type == 'row':
if self.row_pruning_method == 'l1':
return self.row_pruning_mask.to(self.weight.device)
elif self.row_pruning_method == 'topk':
return TopKBinarizer.apply(self.row_mask_scores, self.row_pruning_ratio, False)
else:
raise NotImplementedError
elif pruning_type == 'head':
if self.head_pruning_method == 'topk':
return TopKBinarizer.apply(self.head_pruning_scores, self.head_pruning_ratio, False)
else:
raise NotImplementedError
else:
raise NotImplementedError
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
weight_quantization_enabled_in_forward, quantization_type, num_groups):
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = quantization_period
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
if self.weight_quantization_enabled_in_forward:
logger.warning(
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
)
if self.weight.target_bits >= 3:
if quantization_type == 'symmetric':
self.weight_quantizer = SymQuantizer.apply
else:
self.weight_quantizer = AsymQuantizer.apply
elif self.weight.target_bits == 2:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for ternary weight quantization'
self.weight_quantizer = TernaryQuantizer.apply
elif self.weight.target_bits == 1:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for binary weight quantization'
self.weight_quantizer = BinaryQuantizer.apply
self.weight_quantize_num_groups = num_groups
def fix_weight_quantization(self):
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups).data
self.weight_quantization_enabled_in_forward = False
return None
def enable_activation_quantization(self, bits, quantization_type, range_calibration):
assert bits in [4, 8], 'Only 4/8 bits activation quantization are supported for now'
self.activation_quantization_bits = bits
self.activation_quantization_method = f"{quantization_type}_{range_calibration}"
if range_calibration == 'static':
self.activation_quantizer = QuantAct(quant_mode=quantization_type)
else:
if quantization_type == 'symmetric':
self.activation_quantizer = SymQuantizer.apply
else:
self.activation_quantizer = AsymQuantizer.apply
def head_pruning_reshape(self, w, mask):
shape = w.shape
return (w.t().reshape(self.num_heads, -1) * mask.view(-1, 1)).reshape(shape[1], shape[0]).t()
def forward(self, input, skip_bias_add=False):
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups)
bias = self.bias
else:
weight = self.weight
bias = self.bias
if self.sparse_pruning_enabled and self.sparse_pruning_method:
mask = self.get_mask(pruning_type='sparse')
weight = weight * mask.view(self.weight.size())
if self.row_pruning_enabled and self.row_pruning_method:
mask = self.get_mask(pruning_type='row')
weight = weight * mask.view(-1, 1)
if bias is not None:
bias = bias * mask.view(-1)
if self.head_pruning_enabled and self.head_pruning_method:
mask = self.get_mask(pruning_type='head')
weight = self.head_pruning_reshape(weight, mask)
if self.activation_quantization_enabled:
if 'dynamic' in self.activation_quantization_method:
num_groups = input.numel() // input.size(-1)
else:
num_groups = 1
input = self.activation_quantizer(input, self.activation_quantization_bits, None, None, num_groups)
if skip_bias_add:
# used for mpu linear layers
output = nn.functional.linear(input, weight, None)
return output, bias
else:
output = nn.functional.linear(input, weight, bias)
return output
class Conv2dLayer_Compress(nn.Conv2d):
"""
Conv2D layer with compression.
"""
def __init__(self, *kargs):
super(Conv2dLayer_Compress, self).__init__(*kargs)
self.sparse_pruning_method = None
self.channel_pruning_method = None
self.activation_quantization_method = None
self.weight.start_bits = None
self.weight.target_bits = None
self.weight.q_period = None
self.weight_quantization_enabled_in_forward = False
self.sparse_pruning_enabled = False
self.channel_pruning_enabled = False
self.activation_quantization_enabled = False
def __repr__(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0, ) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1, ) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0, ) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
if self.padding_mode != 'zeros':
s += ', padding_mode={padding_mode}'
output = s.format(**self.__dict__)
return output + ' sparse pruning={}, channel pruning={}, activation quantization={}, weight_quantization={}'.format(
self.sparse_pruning_method is not None, self.channel_pruning_method is not None,
self.activation_quantization_method is not None, self.weight.target_bits)
def enable_sparse_pruning(self, ratio, method):
self.sparse_pruning_ratio = ratio
self.sparse_pruning_method = method
if method == 'l1':
weight_norm = torch.abs(self.weight.data)
mask = TopKBinarizer.apply(weight_norm, self.sparse_pruning_ratio, False)
mask = mask.view(self.weight.size())
mask = mask.to(self.weight.device)
elif method == 'topk':
self.sparse_mask_scores = nn.Parameter(torch.Tensor(self.weight.size()))
self.sparse_mask_scores.data = self.sparse_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.sparse_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('sparse_pruning_mask', mask)
def enable_channel_pruning(self, ratio, method):
# Here, we support two cases: L1 norm based pruning and topk based pruning
self.channel_pruning_ratio = ratio
self.channel_pruning_method = method
if method == 'l1':
# compute the l1 norm of each conv2d kernel (the last three dimension)
weight_norm = torch.linalg.norm(self.weight.data, ord=1, dim=[1, 2, 3])
mask = TopKBinarizer.apply(weight_norm, self.channel_pruning_ratio, False)
mask = mask.view(-1, 1, 1, 1)
mask = mask.to(self.weight.device)
elif method == 'topk':
self.channel_mask_scores = nn.Parameter(torch.Tensor(self.weight.size(0), 1, 1, 1))
self.channel_mask_scores.data = self.channel_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.channel_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('channel_pruning_mask', mask)
def fix_sparse_pruning_helper(self):
mask = self.get_mask(pruning_type='sparse')
self.weight.data = self.weight.data * mask
del self.sparse_pruning_mask
if self.sparse_pruning_method == 'topk':
del self.sparse_mask_scores
self.sparse_pruning_method = None
self.sparse_pruning_enabled = False
return None
def fix_channel_pruning_helper(self, mask=None, dim_reduction=False):
if mask is None:
if self.channel_pruning_method in ['l1', 'topk']:
mask = self.get_mask(pruning_type='channel').bool()
if dim_reduction:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[mask.view(-1), ...])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
if self.bias is not None:
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
else:
self.weight.data = self.weight.data * mask.view(-1, 1, 1, 1)
if self.bias is not None:
self.bias.data = self.bias.data * mask.view(-1)
del self.channel_pruning_mask
if self.channel_pruning_method == 'topk':
del self.channel_mask_scores
self.channel_pruning_method = None
else:
raise NotImplementedError
else:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[:, mask.view(-1), ...])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
mask = None
self.channel_pruning_enabled = False
return mask
def get_mask(self, pruning_type='sparse'):
if pruning_type == 'sparse':
if self.sparse_pruning_method == 'l1':
return self.sparse_pruning_mask.to(self.weight.device)
elif self.sparse_pruning_method == 'topk':
return TopKBinarizer.apply(self.sparse_mask_scores, self.sparse_pruning_ratio, False)
else:
raise NotImplementedError
elif pruning_type == 'channel':
if self.channel_pruning_method == 'l1':
return self.channel_pruning_mask.to(self.weight.device)
elif self.channel_pruning_method == 'topk':
return TopKBinarizer.apply(self.channel_mask_scores, self.channel_pruning_ratio, False)
else:
raise NotImplementedError
else:
raise NotImplementedError
def fix_weight_quantization(self):
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups).data
self.weight_quantization_enabled_in_forward = False
return None
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
weight_quantization_enabled_in_forward, quantization_type, num_groups):
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = quantization_period
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
if self.weight_quantization_enabled_in_forward:
assert self.weight.target_bits >= 4, 'Only >=4 bits weight quantization are supported during forward pass for now'
logger.warning(
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
)
if quantization_type == 'symmetric':
self.weight_quantizer = SymQuantizer.apply
else:
self.weight_quantizer = AsymQuantizer.apply
self.weight_quantize_num_groups = num_groups
def enable_activation_quantization(self, bits, quantization_type, range_calibration):
assert bits in [4, 8], 'Only 4/8 bits activation quantization are supported for now'
self.activation_quantization_bits = bits
self.activation_quantization_method = f"{quantization_type}_{range_calibration}"
if range_calibration == 'static':
self.activation_quantizer = QuantAct(quant_mode=quantization_type)
else:
if quantization_type == 'symmetric':
self.activation_quantizer = SymQuantizer.apply
else:
self.activation_quantizer = AsymQuantizer.apply
def forward(self, input):
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups)
bias = self.bias
else:
weight = self.weight
bias = self.bias
if self.sparse_pruning_enabled and self.sparse_pruning_method:
mask = self.get_mask(pruning_type='sparse')
weight = weight * mask.view(self.weight.size())
if self.channel_pruning_enabled:
mask = self.get_mask(pruning_type='channel')
weight = weight * mask.view(-1, 1, 1, 1)
if bias is not None:
bias = bias * mask.view(-1)
if self.activation_quantization_enabled:
if 'dynamic' in self.activation_quantization_method:
num_groups = input.numel() // input[0].numel()
else:
num_groups = 1
input = self.activation_quantizer(input, self.activation_quantization_bits, None, None, num_groups)
return nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class BNLayer_Compress(nn.BatchNorm2d):
def fix_channel_pruning_helper(self, mask, dim_reduction=True):
self.weight = nn.Parameter(self.weight.data[mask.view(-1)])
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
self.running_mean = self.running_mean[mask.view(-1)]
self.running_var = self.running_var[mask.view(-1)]
def _reduce(input_):
"""All-reduce the input tensor across model parallel group."""
group = g_mpu.get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if dist.get_world_size(group=group) == 1:
return input_
# All-reduce.
dist.all_reduce(input_, group=group)
return input_
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False):
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
assert tensor.size()[last_dim] % num_partitions == 0
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
def _split(input_):
"""Split the tensor along its last dimension and keep the
corresponding slice."""
group = g_mpu.get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if dist.get_world_size(group=group) == 1:
return input_
# Split along last dimension.
world_size = dist.get_world_size(group=group)
input_list = split_tensor_along_last_dim(input_, world_size)
# Note: torch.split does not create contiguous tensors by default.
rank = dist.get_rank(group=group)
output = input_list[rank].contiguous()
return output
def _gather(input_):
"""Gather tensors and concatenate along the last dimension."""
group = g_mpu.get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if dist.get_world_size(group=group) == 1:
return input_
# Size and dimension.
last_dim = input_.dim() - 1
rank = dist.get_rank(group=group)
world_size = dist.get_world_size(group=group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
dist.all_gather(tensor_list, input_, group=group)
# Note: torch.cat already creates a contiguous tensor.
output = torch.cat(tensor_list, dim=last_dim).contiguous()
return output
class _CopyToModelParallelRegion(torch.autograd.Function):
"""Pass the input to the model parallel region."""
@staticmethod
def forward(ctx, input_):
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output)
class _ReduceFromModelParallelRegion(torch.autograd.Function):
"""All-reduce the input from the model parallel region."""
@staticmethod
def forward(ctx, input_):
return _reduce(input_)
@staticmethod
def backward(ctx, grad_output):
return grad_output
class _ScatterToModelParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chuck to the rank."""
@staticmethod
def forward(ctx, input_):
return _split(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output)
class _GatherFromModelParallelRegion(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate."""
@staticmethod
def forward(ctx, input_):
return _gather(input_)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output)
# -----------------
# Helper functions.
# -----------------
def copy_to_model_parallel_region(input_):
return _CopyToModelParallelRegion.apply(input_)
def reduce_from_model_parallel_region(input_):
return _ReduceFromModelParallelRegion.apply(input_)
def scatter_to_model_parallel_region(input_):
return _ScatterToModelParallelRegion.apply(input_)
def gather_from_model_parallel_region(input_):
return _GatherFromModelParallelRegion.apply(input_)
class ColumnParallelLinear_Compress(LinearLayer_Compress):
def __init__(self, mpu, input_size, output_size, bias=True, gather_output=True, skip_bias_add=False):
# Keep input parameters
global g_mpu
g_mpu = mpu
self.input_size = input_size
self.output_size = output_size
self.gather_output = gather_output
self.skip_bias_add = skip_bias_add
# Divide the weight matrix along the last dimension.
world_size = mpu.get_model_parallel_world_size()
assert output_size % world_size == 0
self.output_size_per_partition = output_size // world_size
super(ColumnParallelLinear_Compress, self).__init__(self.input_size, self.output_size_per_partition, bias=bias)
def forward(self, input_):
# Set up backprop all-reduce.
input_parallel = copy_to_model_parallel_region(input_)
# Matrix multiply.
if self.skip_bias_add:
output_parallel, bias = super().forward(input_parallel, True)
else:
output_parallel = super().forward(input_parallel)
bias = None
if self.gather_output:
# All-gather across the partitions.
output = gather_from_model_parallel_region(output_parallel)
else:
output = output_parallel
return output, bias
class RowParallelLinear_Compress(LinearLayer_Compress):
def __init__(self, mpu, input_size, output_size, bias=True, input_is_parallel=False, skip_bias_add=False):
# Keep input parameters
global g_mpu
g_mpu = mpu
self.input_size = input_size
self.output_size = output_size
self.input_is_parallel = input_is_parallel
self.skip_bias_add = skip_bias_add
# Divide the weight matrix along the last dimension.
world_size = mpu.get_model_parallel_world_size()
assert input_size % world_size == 0
self.input_size_per_partition = input_size // world_size
super(RowParallelLinear_Compress, self).__init__(self.input_size_per_partition, self.output_size, bias=bias)
def forward(self, input_):
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
input_parallel = scatter_to_model_parallel_region(input_)
# Matrix multiply.
output_parallel, bias = super().forward(input_parallel, True)
# All-reduce across all the partitions.
output_ = reduce_from_model_parallel_region(output_parallel)
if not self.skip_bias_add:
if bias is not None:
output = output_ + bias
else:
output = output_
output_bias = None
else:
output = output_
output_bias = bias
return output, output_bias