peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/compression
/compress.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import re | |
from .helper import compression_preparation, fix_compression, recursive_getattr, is_module_compressible | |
from .config import get_compression_config | |
from ..runtime.config_utils import dict_raise_error_on_duplicate_keys | |
from .constants import * | |
import os | |
import json | |
try: | |
import neural_compressor as nc | |
except ImportError as e: | |
nc = None | |
def check_deepspeed_config(config): | |
if isinstance(config, dict): | |
return config | |
elif os.path.exists(config): | |
return json.load(open(config, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys) | |
else: | |
raise ValueError( | |
f"Expected a string path to an existing deepspeed config, or a dictionary. Received: {config}") | |
def get_module_name(group_name, model, key_word, exist_module_name, mpu=None, verbose=True): | |
''' | |
get the associated module name from the model based on the key_word provided by users | |
''' | |
return_module_name = [] | |
for name, module in model.named_modules(): | |
module_check = is_module_compressible(module, mpu) | |
if re.search(key_word, name) is not None and module_check: | |
if name in exist_module_name and verbose: | |
# logger.warning | |
raise ValueError( | |
f"{name} is already added to compression, please check your config file for {group_name}.") | |
if name not in exist_module_name: | |
exist_module_name.add(name) | |
return_module_name.append(name) | |
return return_module_name, exist_module_name | |
def get_compress_methods(model, compress_methods, mpu=None): | |
# extract the compression module for each method in compress_methods | |
layer_added_compress_methods = [] | |
for method, method_content in compress_methods.items(): | |
if LAYER_REDUCTION in method: | |
continue | |
# for loop different methods, i.e., weight quantization, activation quantization etc | |
exist_module_name = set() | |
shared_parameters = method_content[SHARED_PARAMETERS] # get all the shared parameters | |
for group_name, method_parameters in method_content[DIFFERENT_GROUPS].items(): | |
# for loop different groups, i.e., weight quantization group 1, weight quantization group 2 etc | |
module_name_list = [] | |
related_module_name_list = [] | |
if method_parameters[DIFFERENT_GROUPS_RELATED_MODULE_SCOPE]: | |
# this is used for head/row/channel pruning, if users provide the related module scope, we can shrink the layer dim for them | |
# otherwise we just mask those as zeros | |
for key_word, related_key_words in zip(method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE], | |
method_parameters[DIFFERENT_GROUPS_RELATED_MODULE_SCOPE]): | |
module_name, exist_module_name = get_module_name(group_name, | |
model, | |
key_word, | |
exist_module_name, | |
mpu=mpu) | |
module_name_list.append(module_name) | |
tmp_related_module_name_list = [] | |
for rkw in related_key_words: | |
# related key word can be a list, for instance the QKV for O matrix in Attention | |
module_name, _ = get_module_name(group_name, model, rkw, set(), mpu=mpu) | |
tmp_related_module_name_list.append(module_name) | |
related_module_name_list.append(tmp_related_module_name_list) | |
else: | |
for key_word in method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE]: | |
module_name, exist_module_name = get_module_name(group_name, | |
model, | |
key_word, | |
exist_module_name, | |
mpu=mpu) | |
module_name_list.append(module_name) | |
if module_name_list: | |
# combine shared parameters with each group | |
combined_method_parameters = { | |
**(method_parameters.copy().pop(DIFFERENT_GROUPS_PARAMETERS)), | |
**shared_parameters | |
} | |
compression_item = [module_name_list, related_module_name_list, {method: combined_method_parameters}] | |
layer_added_compress_methods.append(compression_item) | |
return layer_added_compress_methods | |
def init_compression(model, deepspeed_config, teacher_model=None, mpu=None): | |
""" | |
Compress a model: replace linear/conv2d layer with deepspeed compression-aware modules | |
Args: | |
model (`torch.nn.Module`) | |
The model to compress. | |
deepspeed_config (`DeepSpeedConfig`) | |
The path of ds_config | |
mpu | |
The mpu module for Row/Column parallelism | |
""" | |
compress_methods = get_compression_config(check_deepspeed_config(deepspeed_config)) | |
if hasattr(model, 'module'): | |
c_model = model.module | |
else: | |
c_model = model | |
# For layer reduction | |
if compress_methods[LAYER_REDUCTION][LAYER_REDUCTION_ENABLED]: | |
assert teacher_model is not None, "Teacher model is required for layer reduction" | |
student_initialization(c_model, teacher_model, deepspeed_config) | |
layer_added_compress_methods = get_compress_methods(c_model, compress_methods, mpu=mpu) | |
compression_preparation(c_model, layer_added_compress_methods, mpu) | |
# For sparse pruning snip_momentum method | |
shared_parameters = compress_methods[SPARSE_PRUNING][SHARED_PARAMETERS] | |
if shared_parameters[SPARSE_PRUNING_ENABLED] and \ | |
shared_parameters[SPARSE_PRUNING_METHOD] == SPARSE_PRUNING_METHOD_SNIP_MOMENTUM: | |
assert nc is not None, "please ensure the neural_compressor python package is installed by pip or conda if user wants to use snip_momentum sparse pruning" | |
from .helper import generate_pruners, register_on_step_begin | |
from nc import WeightPruningConfig | |
config = WeightPruningConfig(target_sparsity=1 - shared_parameters[SPARSE_PRUNING_DENSE_RATIO], | |
pattern=shared_parameters[SPARSE_PRUNING_BLOCK_PATTERN], | |
pruning_frequency=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE], | |
start_step=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET], | |
end_step=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET_END], | |
excluded_op_names=shared_parameters[SPARSE_PRUNING_EXCLUDED_MODULES]) | |
pruners = generate_pruners(config, c_model) | |
c_model.pruners = pruners | |
register_on_step_begin(c_model) | |
return model | |
def redundancy_clean(model, deepspeed_config, mpu=None): | |
""" | |
Remove the redundancy of a model | |
Args: | |
model (`torch.nn.Module`) | |
The model to compress. | |
deepspeed_config (`DeepSpeedConfig`) | |
The path of ds_config | |
mpu | |
The mpu module for Row/Column parallelism | |
""" | |
compress_methods = get_compression_config(check_deepspeed_config(deepspeed_config)) | |
if hasattr(model, 'module'): | |
c_model = model.module | |
else: | |
c_model = model | |
layer_added_compress_methods_tmp = get_compress_methods(c_model, compress_methods, mpu=mpu) | |
# sort methods | |
order_list = [ | |
WEIGHT_QUANTIZATION, SPARSE_PRUNING, ROW_PRUNING, HEAD_PRUNING, CHANNEL_PRUNING, ACTIVATION_QUANTIZATION | |
] | |
layer_added_compress_methods = sorted(layer_added_compress_methods_tmp, | |
key=lambda x: order_list.index(list(x[2].keys())[0])) | |
for module_name_lists, related_module_name_lists, compression_technique in layer_added_compress_methods: | |
stored_mask = [] | |
need_mask = True if related_module_name_lists else False | |
for i, mnl in enumerate(module_name_lists): | |
for module_name in mnl: | |
mask = fix_compression(c_model, module_name, compression_technique, dim_reduction=need_mask) | |
if need_mask: | |
stored_mask.append(mask) | |
if need_mask: | |
for rmnl in related_module_name_lists[i]: | |
for j, module_name in enumerate(rmnl): | |
mask = fix_compression(c_model, | |
module_name, | |
compression_technique, | |
mask=stored_mask[j], | |
dim_reduction=True) | |
return model | |
def student_initialization(student_model, teacher_model, deepspeed_config): | |
''' | |
Given a student model and a teacher model, select the | |
Args: | |
student_model (`torch.nn.Module`) | |
The model we will update weight | |
teacher_model (`torch.nn.Module`) | |
The model guide the student to learn | |
deepspeed_config (`DeepSpeedConfig`) | |
The path of ds_config | |
''' | |
config = get_compression_config(check_deepspeed_config(deepspeed_config)) | |
compress_methods = config[LAYER_REDUCTION] | |
module_name_prefix = compress_methods[MODULE_NAME_PREFIX] | |
teacher_layer = compress_methods[TEACHER_LAYER] | |
student_layer = [i for i in range(len(teacher_layer))] | |
other_module_name = compress_methods[OTHER_MODULE_NAME] | |
''' | |
name_prefix (`str`) | |
The prefix name before the layer #. | |
Example 1: bert.encoder.layer, for BERT_base model's prefix name | |
Example 2: transformer.h, for GPT-2 hugging face prefix name | |
teacher_layer (`list of integers`) | |
The layer of teacher will be used for student's reinitialization | |
Example 1: [1,3,5,7,9], means we want to matches the 2nd/4th/6th/8th/10th layer of teacher to the first 5 layers of student | |
student_layer (`list` or None) | |
The layer of student need to be re-initialized | |
Example 1: None, means we want to reinitialize all the layers | |
Example 1: [0,1,2,3,4], means we want to reinitialize the first 5 layers | |
other_module_name (`list of string`) | |
The modules will be used for student's reinitialization | |
Example 1: ['bert.pooler', 'bert.embeddings', 'classifier'], means we want to apply the weight in teacher's embedding/pooler/classier module to the student | |
Example 2: ['transformer.w', 'transformer.ln_f', 'lm_head'], means we want to apply the weight in teacher's embedding layers module to the student | |
Note that teacher_layer should matches student layer | |
''' | |
assert len(student_layer) == len(teacher_layer) | |
for s_name, t_name in zip(student_layer, teacher_layer): | |
s_module = recursive_getattr(student_model, module_name_prefix + '.' + str(s_name)) | |
t_module = recursive_getattr(teacher_model, module_name_prefix + '.' + str(t_name)) | |
for s_param, t_param in zip(s_module.parameters(), t_module.parameters()): | |
s_param.data.copy_(t_param.data) | |
for name in other_module_name: | |
s_module = recursive_getattr(student_model, name) | |
t_module = recursive_getattr(teacher_model, name) | |
print(name) | |
for s_param, t_param in zip(s_module.parameters(), t_module.parameters()): | |
s_param.data.copy_(t_param.data) | |