peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/compression
/helper.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from .basic_layer import Embedding_Compress, LinearLayer_Compress, Conv2dLayer_Compress, BNLayer_Compress, ColumnParallelLinear_Compress, RowParallelLinear_Compress | |
from .constants import * | |
from deepspeed.utils import logger | |
try: | |
from neural_compressor.compression import pruner as nc_pruner | |
except ImportError as e: | |
nc_pruner = None | |
def recursive_getattr(model, module_name): | |
""" | |
Recursively get the attribute of a module. | |
Args: | |
model (`torch.nn.Module`) | |
The model to get the attribute from. | |
module_name (`str`) | |
The name of the module to get the attribute from. | |
""" | |
split_list = module_name.split('.') | |
output = model | |
for name in split_list: | |
output = getattr(output, name) | |
return output | |
def recursive_setattr(model, module_name, module): | |
""" | |
Recursively set the attribute of a module. | |
Args: | |
model (`torch.nn.Module`) | |
The model to set the attribute in. | |
module_name (`str`) | |
The name of the module to set the attribute in. | |
module (`torch.nn.Module`) | |
The module to set the attribute to. | |
""" | |
split_list = module_name.split('.') | |
output = model | |
for name in split_list[:-1]: | |
output = getattr(output, name) | |
output.__setattr__(split_list[-1], module) | |
def module_replacement(model, module_name, compression_technique=None, mpu=None): | |
""" | |
Replace a module with a new module. | |
Args: | |
model (`torch.nn.Module`) | |
The model to replace the module in. | |
module_name (`str`) | |
The name of the module to replace. | |
compression_technique (`str`) | |
The compression technique to use for the new module. | |
""" | |
# Get the old module | |
old_module = recursive_getattr(model, module_name) | |
need_bias = False | |
if hasattr(old_module, 'bias') and old_module.bias is not None: | |
need_bias = True | |
# Initialize the new module | |
if isinstance(old_module, LinearLayer_Compress) or isinstance(old_module, torch.nn.Linear): | |
if isinstance(old_module, LinearLayer_Compress): | |
new_module = old_module | |
else: | |
new_module = LinearLayer_Compress(old_module.in_features, old_module.out_features, | |
bias=need_bias).to(device=old_module.weight.device, | |
dtype=old_module.weight.dtype) | |
new_module.weight.data = old_module.weight.data | |
if need_bias: | |
new_module.bias.data = old_module.bias.data | |
elif isinstance(old_module, Conv2dLayer_Compress) or isinstance(old_module, torch.nn.Conv2d): | |
if isinstance(old_module, Conv2dLayer_Compress): | |
new_module = old_module | |
else: | |
new_module = Conv2dLayer_Compress(old_module.in_channels, old_module.out_channels, old_module.kernel_size, old_module.stride, old_module.padding, \ | |
old_module.dilation, old_module.groups, need_bias, \ | |
old_module.padding_mode).to(device=old_module.weight.device, dtype=old_module.weight.dtype) | |
new_module.weight.data = old_module.weight.data | |
if need_bias: | |
new_module.bias.data = old_module.bias.data | |
elif isinstance(old_module, torch.nn.BatchNorm2d): | |
new_module = BNLayer_Compress(old_module.num_features, old_module.eps, old_module.momentum, old_module.affine, | |
old_module.track_running_stats).to(old_module.weight.device, | |
old_module.weight.dtype) | |
new_module.weight.data = old_module.weight.data | |
if need_bias: | |
new_module.bias.data = old_module.bias.data | |
new_module.running_mean.data = old_module.running_mean.data | |
new_module.running_var.data = old_module.running_var.data | |
elif isinstance(old_module, Embedding_Compress) or isinstance(old_module, torch.nn.Embedding): | |
if isinstance(old_module, Embedding_Compress): | |
new_module = old_module | |
else: | |
new_module = Embedding_Compress(old_module.num_embeddings, old_module.embedding_dim, old_module.padding_idx, old_module.max_norm, old_module.norm_type, \ | |
old_module.scale_grad_by_freq, old_module.sparse).to(device=old_module.weight.device, dtype=old_module.weight.dtype) | |
new_module.weight.data = old_module.weight.data | |
elif mpu is not None and (isinstance(old_module, ColumnParallelLinear_Compress) | |
or isinstance(old_module, mpu.ColumnParallelLinear)): | |
if isinstance(old_module, ColumnParallelLinear_Compress): | |
new_module = old_module | |
else: | |
new_module = ColumnParallelLinear_Compress(mpu, | |
old_module.input_size, | |
old_module.output_size, | |
gather_output=old_module.gather_output, | |
skip_bias_add=old_module.skip_bias_add, | |
bias=need_bias).to(device=old_module.weight.device, | |
dtype=old_module.weight.dtype) | |
new_module.weight.data = old_module.weight.data | |
if need_bias: | |
new_module.bias.data = old_module.bias.data | |
elif mpu is not None and (isinstance(old_module, RowParallelLinear_Compress) | |
or isinstance(old_module, mpu.RowParallelLinear)): | |
if isinstance(old_module, RowParallelLinear_Compress): | |
new_module = old_module | |
else: | |
new_module = RowParallelLinear_Compress(mpu, | |
old_module.input_size, | |
old_module.output_size, | |
input_is_parallel=old_module.input_is_parallel, | |
skip_bias_add=old_module.skip_bias_add, | |
bias=need_bias).to(device=old_module.weight.device, | |
dtype=old_module.weight.dtype) | |
new_module.weight.data = old_module.weight.data | |
if need_bias: | |
new_module.bias.data = old_module.bias.data | |
else: | |
new_module = None | |
if compression_technique is not None: | |
for k, v in compression_technique.items(): | |
if k == SPARSE_PRUNING: | |
if v[SPARSE_PRUNING_ENABLED]: | |
new_module.enable_sparse_pruning(v[SPARSE_PRUNING_DENSE_RATIO], v[SPARSE_PRUNING_METHOD]) | |
elif k == ROW_PRUNING: | |
if v[ROW_PRUNING_ENABLED]: | |
new_module.enable_row_pruning(v[ROW_PRUNING_DENSE_RATIO], v[ROW_PRUNING_METHOD]) | |
elif k == HEAD_PRUNING: | |
if v[HEAD_PRUNING_ENABLED]: | |
new_module.enable_head_pruning(v[HEAD_PRUNING_DENSE_RATIO], v[HEAD_PRUNING_METHOD], | |
v[HEAD_PRUNING_NUM_HEADS]) | |
elif k == ACTIVATION_QUANTIZATION: | |
if v[ACTIVATION_QUANTIZATION_ENABLED]: | |
new_module.enable_activation_quantization(v[ACTIVATION_QUANTIZE_BITS], v[ACTIVATION_QUANTIZE_TYPE], | |
v[ACTIVATION_QUANTIZE_RANGE]) | |
elif k == WEIGHT_QUANTIZATION: | |
if v[WEIGHT_QUANTIZE_ENABLED]: | |
new_module.enable_weight_quantization(v[WEIGHT_QUANTIZE_START_BITS], | |
v[WEIGHT_QUANTIZE_TARGET_BITS], | |
v[WEIGHT_QUANTIZATION_PERIOD], | |
v[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED], | |
v[WEIGHT_QUANTIZE_TYPE], v[WEIGHT_QUANTIZE_GROUPS]) | |
elif k == CHANNEL_PRUNING: | |
if v[CHANNEL_PRUNING_ENABLED]: | |
new_module.enable_channel_pruning(v[CHANNEL_PRUNING_DENSE_RATIO], v[CHANNEL_PRUNING_METHOD]) | |
else: | |
raise NotImplementedError('Compression technique {} is not implemented'.format(k)) | |
# Replace the old module with the new one | |
recursive_setattr(model, module_name, new_module) | |
def is_module_compressible(module, mpu=None): | |
ret = isinstance(module, torch.nn.Linear) or \ | |
isinstance(module, torch.nn.Conv2d) or \ | |
isinstance(module, torch.nn.Embedding) or \ | |
isinstance(module, torch.nn.BatchNorm2d) | |
if mpu is not None: | |
ret = ret or isinstance(module, mpu.RowParallelLinear) or isinstance(module, mpu.ColumnParallelLinear) | |
return ret | |
def compression_preparation(model, compression_technique_list, mpu): | |
""" | |
Prepare the compression techniques of a model. | |
Args: | |
model (`torch.nn.Module`) | |
The model to prepare the compression techniques of. | |
compression_technique_list (`list`) | |
The list of compression techniques to prepare the model to. | |
list[] | |
""" | |
# Here we first replace all module with our linear wrapper | |
for module_name, module in model.named_modules(): | |
if is_module_compressible(module, mpu): | |
module_replacement(model, module_name, mpu=mpu) | |
for module_name_lists, _, compression_technique in compression_technique_list: | |
for mnl in module_name_lists: | |
for module_name in mnl: | |
module_replacement(model, module_name, compression_technique) | |
return model | |
def fix_compression(model, module_name, compression_technique, mask=None, dim_reduction=False): | |
""" | |
Fix the compression technique of a module. | |
Args: | |
model (`torch.nn.Module`) | |
The model to fix the compression technique of. | |
module_name (`str`) | |
The name of the module to fix the compression technique of. | |
compression_technique (`str`) | |
The compression technique to fix the module to. | |
""" | |
# Here we can make things much simpler by just replacing the module | |
module = recursive_getattr(model, module_name) | |
for k, v in compression_technique.items(): | |
if k == WEIGHT_QUANTIZATION and v[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED] and v[WEIGHT_QUANTIZE_ENABLED]: | |
return module.fix_weight_quantization() | |
elif k == SPARSE_PRUNING and v[SPARSE_PRUNING_ENABLED]: | |
return module.fix_sparse_pruning_helper() | |
elif k == ROW_PRUNING and (v[ROW_PRUNING_ENABLED] or mask is not None): | |
return module.fix_row_col_pruning_helper(mask, dim_reduction=dim_reduction) | |
elif k == HEAD_PRUNING and (v[HEAD_PRUNING_ENABLED] or mask is not None): | |
return module.fix_head_pruning_helper(mask, v[HEAD_PRUNING_NUM_HEADS], dim_reduction=dim_reduction) | |
elif k == CHANNEL_PRUNING and (v[CHANNEL_PRUNING_ENABLED] or mask is not None): | |
return module.fix_channel_pruning_helper(mask, dim_reduction=dim_reduction) | |
def convert_conv1d_to_linear(model, convert_type): | |
''' | |
This is a help function to convert conv1d to linear (e.g., convert GPT2 from HF) | |
''' | |
if hasattr(model, 'module'): | |
c_model = model.module | |
else: | |
c_model = model | |
for name, module in c_model.named_modules(): | |
if isinstance(module, convert_type): | |
old_module = recursive_getattr(c_model, name) | |
new_module = torch.nn.Linear(old_module.weight.data.size(0), | |
old_module.weight.data.size(1), | |
bias=True if old_module.bias is not None else False) | |
new_module.weight.data = old_module.weight.data.t().contiguous() | |
if new_module.bias is not None: | |
new_module.bias.data = old_module.bias.data.view(-1) | |
recursive_setattr(c_model, name, new_module) | |
return model | |
def generate_pruners(config, model): | |
"""Generate pruners. | |
Args: | |
config (`neural_compressor.WeightPruningConfig`) | |
The object to the class WeightPruningConfig. | |
model (`torch.nn.module`) | |
The torch module object to be pruned. | |
""" | |
assert nc_pruner is not None, "please ensure the neural_compressor python package is installed by pip or conda if user wants to use snip_momentum sparse pruning" | |
from nc_pruner.utils import process_config, parse_to_prune | |
from nc_pruner.pruners import get_pruner | |
assert isinstance(model, torch.nn.Module) | |
pruners_info = process_config(config) | |
pruners = [] | |
for info in pruners_info: | |
modules = parse_to_prune(info, model) | |
if modules == {}: | |
logger.warning("one pruner hooks no layers, please have a check") | |
pruners.append(get_pruner(info, modules)) | |
info['modules'] = [key for key in modules.keys()] | |
info['len_of_modules'] = len(info['modules']) | |
logger.info(info) | |
return pruners | |
def register_on_step_begin(model): | |
"""Mount on_step_begin to the model. | |
Args: | |
model (`torch.nn.module`) | |
The torch module object to be pruned. | |
""" | |
def hook(module, input): | |
for pruner in module.pruners: | |
pruner.on_step_begin(0) | |
hook_handle = model.register_forward_pre_hook(hook) | |
return hook_handle | |
def rewrite_optimizer_step(opt: torch.optim.Optimizer): | |
"""Mount on_before/after_optimizer_step to the optimizer. | |
Args: | |
model (`torch.opt.Optimizer`) | |
The torch optimizer object to be hooked. | |
""" | |
def new_step(self, closure=None): | |
if hasattr(self, "pruners"): | |
for pruner in self.pruners: | |
pruner.on_before_optimizer_step() | |
if closure is not None: | |
res = self.orig_step(closure) | |
else: | |
res = self.orig_step() | |
if hasattr(self, "pruners"): | |
for pruner in self.pruners: | |
pruner.on_after_optimizer_step() | |
return res | |
opt.orig_step = opt.step | |
import types | |
opt.step = types.MethodType(new_step, opt) | |
return opt | |