peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/compression
/scheduler.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from .compress import get_module_name | |
from .constants import * | |
from .helper import recursive_getattr | |
from deepspeed.utils import logger | |
class compression_scheduler(): | |
''' | |
Used to schedule different compression methods | |
''' | |
def __init__(self, model, compression_config): | |
self.model = model | |
self.compression_config = compression_config | |
self.make_init() | |
self.training_steps = 0 | |
self.weight_quantization_enabled = False | |
self.verbose = { | |
WEIGHT_QUANTIZATION: False, | |
ACTIVATION_QUANTIZATION: False, | |
SPARSE_PRUNING: False, | |
HEAD_PRUNING: False, | |
ROW_PRUNING: False, | |
CHANNEL_PRUNING: False | |
} | |
def make_init(self): | |
self.different_compression_methods = {} | |
for method, method_content in self.compression_config.items(): | |
if LAYER_REDUCTION in method: | |
continue | |
self.different_compression_methods[method] = { | |
TECHNIQUE_ENABLED: False, | |
SHARED_PARAMETERS: None, | |
DIFFERENT_GROUPS: [] | |
} | |
exist_module_name = set() | |
shared_parameters = method_content[SHARED_PARAMETERS] | |
self.different_compression_methods[method][TECHNIQUE_ENABLED] = shared_parameters[TECHNIQUE_ENABLED] | |
self.different_compression_methods[method][SHARED_PARAMETERS] = shared_parameters | |
for group_name, method_parameters in method_content[DIFFERENT_GROUPS].items(): | |
module_name_list = [] | |
for key_word in method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE]: | |
module_name, exist_module_name = get_module_name(group_name, | |
self.model, | |
key_word, | |
exist_module_name, | |
verbose=False) | |
module_name_list.extend(module_name) | |
if module_name_list: | |
self.different_compression_methods[method][DIFFERENT_GROUPS].append( | |
[group_name, module_name_list, | |
method_parameters.copy().pop('params')]) | |
def check_weight_quantization(self): | |
# check weight quantization | |
wq = self.different_compression_methods[WEIGHT_QUANTIZATION] | |
if not wq[TECHNIQUE_ENABLED]: | |
return | |
else: | |
shared_parameters = wq[SHARED_PARAMETERS] | |
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]: | |
for group_name, module_name_list, method_parameters in wq[DIFFERENT_GROUPS]: | |
for module_name in module_name_list: | |
module = recursive_getattr(self.model, module_name) | |
module.weight_quantization_enabled = True | |
if not self.verbose[WEIGHT_QUANTIZATION]: | |
logger.info(f'Weight quantization is enabled at step {self.training_steps}') | |
self.weight_quantization_enabled = True | |
self.verbose[WEIGHT_QUANTIZATION] = True | |
def check_activation_quantization(self): | |
# check activation quantization | |
aq = self.different_compression_methods[ACTIVATION_QUANTIZATION] | |
if not aq[TECHNIQUE_ENABLED]: | |
return | |
else: | |
shared_parameters = aq[SHARED_PARAMETERS] | |
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]: | |
for group_name, module_name_list, method_parameters in aq[DIFFERENT_GROUPS]: | |
for module_name in module_name_list: | |
module = recursive_getattr(self.model, module_name) | |
module.activation_quantization_enabled = True | |
if not self.verbose[ACTIVATION_QUANTIZATION]: | |
logger.info(f'Activation quantization is enabled at step {self.training_steps}') | |
self.verbose[ACTIVATION_QUANTIZATION] = True | |
def check_sparse_pruning(self): | |
# check sparse pruning | |
sp = self.different_compression_methods[SPARSE_PRUNING] | |
if not sp[TECHNIQUE_ENABLED]: | |
return | |
else: | |
shared_parameters = sp[SHARED_PARAMETERS] | |
if shared_parameters[TECHNIQUE_SCHEDULE_OFFSET] <= self.training_steps <= shared_parameters[ | |
TECHNIQUE_SCHEDULE_OFFSET_END]: | |
for group_name, module_name_list, method_parameters in sp[DIFFERENT_GROUPS]: | |
for module_name in module_name_list: | |
module = recursive_getattr(self.model, module_name) | |
module.sparse_pruning_enabled = True | |
if not self.verbose[SPARSE_PRUNING]: | |
logger.info(f'Sparse pruning is enabled at step {self.training_steps}') | |
self.verbose[SPARSE_PRUNING] = True | |
def check_head_pruning(self): | |
# check head pruning | |
hp = self.different_compression_methods[HEAD_PRUNING] | |
if not hp[TECHNIQUE_ENABLED]: | |
return | |
else: | |
shared_parameters = hp[SHARED_PARAMETERS] | |
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]: | |
for group_name, module_name_list, method_parameters in hp[DIFFERENT_GROUPS]: | |
for module_name in module_name_list: | |
module = recursive_getattr(self.model, module_name) | |
module.head_pruning_enabled = True | |
if not self.verbose[HEAD_PRUNING]: | |
logger.info(f'Head pruning is enabled at step {self.training_steps}') | |
self.verbose[HEAD_PRUNING] = True | |
def check_row_pruning(self): | |
# check row pruning | |
rp = self.different_compression_methods[ROW_PRUNING] | |
if not rp[TECHNIQUE_ENABLED]: | |
return | |
else: | |
shared_parameters = rp[SHARED_PARAMETERS] | |
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]: | |
for group_name, module_name_list, method_parameters in rp[DIFFERENT_GROUPS]: | |
for module_name in module_name_list: | |
module = recursive_getattr(self.model, module_name) | |
module.row_pruning_enabled = True | |
if not self.verbose[ROW_PRUNING]: | |
logger.info(f'Row pruning is enabled at step {self.training_steps}') | |
self.verbose[ROW_PRUNING] = True | |
def check_channel_pruning(self): | |
# check channel pruning | |
cp = self.different_compression_methods[CHANNEL_PRUNING] | |
if not cp[TECHNIQUE_ENABLED]: | |
return | |
else: | |
shared_parameters = cp[SHARED_PARAMETERS] | |
if self.training_steps >= shared_parameters[TECHNIQUE_SCHEDULE_OFFSET]: | |
for group_name, module_name_list, method_parameters in cp[DIFFERENT_GROUPS]: | |
for module_name in module_name_list: | |
module = recursive_getattr(self.model, module_name) | |
module.channel_pruning_enabled = True | |
if not self.verbose[CHANNEL_PRUNING]: | |
logger.info(f'Channel pruning is enabled at step {self.training_steps}') | |
self.verbose[CHANNEL_PRUNING] = True | |
def check_all_modules(self): | |
# check all different compression methods we have | |
self.check_weight_quantization() | |
self.check_activation_quantization() | |
self.check_sparse_pruning() | |
self.check_head_pruning() | |
self.check_row_pruning() | |
self.check_channel_pruning() | |
def step(self, step_zero_check=False): | |
if not step_zero_check: | |
self.training_steps += 1 | |
self.check_all_modules() | |