|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import autograd |
|
import math |
|
|
|
|
|
class TopKBinarizer(autograd.Function): |
|
""" |
|
Top-k Binarizer. |
|
Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}` |
|
is among the k% highest values of S. |
|
Implementation is inspired from: |
|
https://github.com/yaozhewei/MLPruning |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool): |
|
""" |
|
Args: |
|
inputs (`torch.FloatTensor`) |
|
The input matrix from which the binarizer computes the binary mask. |
|
threshold (`float`) |
|
The percentage of weights to keep (the rest is pruned). |
|
`threshold` is a float between 0 and 1. |
|
sigmoid (`bool`) |
|
Whether to apply a sigmoid on the threshold |
|
Returns: |
|
mask (`torch.FloatTensor`) |
|
Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is |
|
retained, 0 - the associated weight is pruned). |
|
""" |
|
|
|
if sigmoid: |
|
threshold = torch.sigmoid(threshold).item() |
|
ctx.sigmoid = sigmoid |
|
mask = inputs.clone() |
|
|
|
_, idx = inputs.flatten().sort(descending=True) |
|
j = math.ceil(threshold * inputs.numel()) |
|
|
|
|
|
flat_out = mask.flatten() |
|
flat_out[idx[j:]] = 0. |
|
flat_out[idx[:j]] = 1. |
|
ctx.save_for_backward(mask) |
|
|
|
return mask |
|
|
|
@staticmethod |
|
def backward(ctx, gradOutput): |
|
mask, = ctx.saved_tensors |
|
if ctx.sigmoid: |
|
return gradOutput.clone(), ((gradOutput * mask).sum()).view(-1), None |
|
else: |
|
return gradOutput.clone(), None, None |
|
|
|
|
|
class SymQuantizer(torch.autograd.Function): |
|
""" |
|
Symmetric quantization |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1): |
|
""" |
|
Args: |
|
inputs (`torch.FloatTensor`) |
|
The input which needs to be quantized |
|
num_bits (int, >=4) |
|
Number of bits to use for quantization |
|
min_value/max_value (torch.FloatTensor) |
|
Used for static activation quantization |
|
num_groups (int) |
|
How many groups to partition the quantization into |
|
Returns: |
|
quantized_input (`torch.FloatTensor`) |
|
Quantized input |
|
""" |
|
assert (min_value is None and max_value is None) or (min_value is not None and max_value is not None |
|
and num_groups == 1) |
|
q_range = 2**num_bits |
|
input_shape = input.shape |
|
if min_value is None: |
|
input = input.reshape(num_groups, -1) |
|
max_input = torch.amax(torch.abs(input), dim=-1).view(num_groups, -1) |
|
else: |
|
max_input = torch.max(min_value.abs(), max_value).view(-1) |
|
|
|
scale = 2 * max_input / q_range |
|
output = (input / scale).round().clamp(-q_range // 2, q_range // 2 - 1) * scale |
|
output = output.reshape(input_shape).contiguous() |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
grad_input = grad_output.clone() |
|
return grad_input, None, None, None, None |
|
|
|
|
|
class AsymQuantizer(torch.autograd.Function): |
|
""" |
|
Asymmetric quantization |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1): |
|
""" |
|
Args: |
|
inputs (`torch.FloatTensor`) |
|
The input which needs to be quantized |
|
num_bits (int, >=4) |
|
Number of bits to use for quantization |
|
min_value/max_value (torch.FloatTensor) |
|
Used for static activation quantization |
|
num_groups (int) |
|
How many groups to partition the quantization into |
|
Returns: |
|
quantized_input (`torch.FloatTensor`) |
|
Quantized input |
|
""" |
|
|
|
assert (min_value is None and max_value is None) or (min_value is not None and max_value is not None |
|
and num_groups == 1) |
|
q_range = 2**num_bits |
|
input_shape = input.shape |
|
if min_value is None: |
|
input = input.reshape(num_groups, -1) |
|
min_value = input.amin(dim=-1, keepdim=True) |
|
max_value = input.amax(dim=-1, keepdim=True) |
|
|
|
scale = (max_value - min_value) / q_range |
|
zero_point = (min_value / scale).round() * scale |
|
|
|
output = ((input - zero_point) / scale).round().clamp(0, q_range - 1) * scale + zero_point |
|
output = output.reshape(input_shape).contiguous() |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
grad_input = grad_output.clone() |
|
return grad_input, None, None, None, None |
|
|
|
|
|
class TernaryQuantizer(torch.autograd.Function): |
|
""" |
|
Ternary quantization |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1): |
|
""" |
|
Args: |
|
inputs (`torch.FloatTensor`) |
|
The input which needs to be quantized |
|
num_bits (int) |
|
Dummy variable |
|
min_value/max_value (torch.FloatTensor) |
|
Used for static activation quantization; for now they are dummy variable |
|
num_groups (int) |
|
How many groups to partition the quantization into |
|
Returns: |
|
quantized_input (`torch.FloatTensor`) |
|
Quantized input |
|
""" |
|
|
|
assert (min_value is None and max_value is None) |
|
input_flat = input.reshape(num_groups, -1) |
|
n = input_flat.shape[1] |
|
m = input_flat.norm(p=1, dim=1).div(n) |
|
thres = (0.7 * m).view(-1, 1) |
|
pos = (input_flat > thres).type(input.type()) |
|
neg = (input_flat < -thres).type(input.type()) |
|
mask = (input_flat.abs() > thres).type(input.type()) |
|
alpha = ((mask * input_flat).abs().sum(dim=1) / mask.sum(dim=1)).view(-1, 1) |
|
output = alpha * pos - alpha * neg |
|
output = output.reshape(input.shape).contiguous() |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
grad_input = grad_output.clone() |
|
return grad_input, None, None, None, None |
|
|
|
|
|
class BinaryQuantizer(torch.autograd.Function): |
|
""" |
|
Binary quantization |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, input, num_bits, min_value=None, max_value=None, num_groups=1): |
|
""" |
|
Args: |
|
inputs (`torch.FloatTensor`) |
|
The input which needs to be quantized |
|
num_bits (int) |
|
Dummy variable |
|
min_value/max_value (torch.FloatTensor) |
|
Used for static activation quantization; for now they are dummy variable |
|
num_groups (int) |
|
How many groups to partition the quantization into |
|
Returns: |
|
quantized_input (`torch.FloatTensor`) |
|
Quantized input |
|
""" |
|
|
|
assert (min_value is None and max_value is None) |
|
input_flat = input.reshape(num_groups, -1) |
|
n = input_flat.shape[1] |
|
m = input_flat.norm(p=1, dim=1, keepdim=True).div(n) |
|
output = input_flat.sign().mul(m) |
|
output = output.reshape(input.shape).contiguous() |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
grad_input = grad_output.clone() |
|
return grad_input, None, None, None, None |
|
|