peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/launcher
/launch.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
""" | |
DeepSpeed launcher, this is similar to torch's distributed.launch but supports | |
additional features such as arbitrary gpu exclusion. | |
deepspeed.launcher.launch is intended to be run on a single worker node and | |
will spawn several worker sub-processes depending on how many devices/ranks | |
are on the worker. | |
""" | |
import sys | |
import subprocess | |
import os | |
import json | |
import base64 | |
import time | |
import signal | |
import psutil | |
from collections import defaultdict | |
from typing import Dict | |
from argparse import ArgumentParser, REMAINDER | |
from deepspeed.accelerator import get_accelerator | |
from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT | |
from ..nebula.constants import DLTS_POD_ENV_PATH | |
from ..utils import logger, get_numactl_cmd | |
from ..elasticity import is_torch_elastic_compatible | |
from .constants import ELASTIC_TRAINING_ID_DEFAULT | |
PID_FILE_BASEPATH = "/tmp" | |
def parse_args(): | |
parser = ArgumentParser(description="DeepSpeed distributed training launch" | |
" utility that creates multiple distributed" | |
" processes on a single node") | |
# Optional arguments for the launch helper | |
parser.add_argument("--node_rank", | |
type=int, | |
default=0, | |
help="The rank of the node for multi-node distributed " | |
"training") | |
parser.add_argument("--master_addr", | |
default="127.0.0.1", | |
type=str, | |
help="Master node (rank 0)'s address, should be either" | |
" the IP address or the hostname of node 0, for" | |
" single node multi-proc training, the" | |
" --master_addr can simply be 127.0.0.1") | |
parser.add_argument("--master_port", | |
default=TORCH_DISTRIBUTED_DEFAULT_PORT, | |
type=int, | |
help="Master node (rank 0)'s free port that needs to " | |
"be used for communication during distributed " | |
"training") | |
parser.add_argument("--world_info", default="None", type=str, help="world info base64 encoded dictionary") | |
parser.add_argument("--module", | |
action="store_true", | |
help="Change each process to interpret the launch " | |
"script as a Python module, executing with the same " | |
"behavior as 'python -m'.") | |
parser.add_argument("--no_python", | |
action="store_true", | |
help="Skip prepending the training script with " | |
"'python' - just execute it directly.") | |
parser.add_argument("--enable_elastic_training", action="store_true", help="Enable elastic training support.") | |
parser.add_argument("--min_elastic_nodes", type=int, default=-1, help="Min number of nodes in elastic training.") | |
parser.add_argument("--max_elastic_nodes", type=int, default=-1, help="Max number of nodes in elastic training.") | |
parser.add_argument("--no_local_rank", | |
action="store_true", | |
help="Do not pass local_rank as an argument when calling " | |
"the user's training script.") | |
parser.add_argument("--save_pid", | |
type=int, | |
default=0, | |
help="main launching process pid, for internal pid tracking") | |
parser.add_argument("--enable_each_rank_log", | |
default="None", | |
type=str, | |
help="redirect the stdout and stderr from each rank into different log files") | |
parser.add_argument("--bind_cores_to_rank", | |
action="store_true", | |
help="Bind each rank to different cores of the host. " | |
"This improves host efficiency especially for CPU backend") | |
parser.add_argument("--bind_core_list", | |
type=str, | |
default=None, | |
help="List of cores to bind to with comma separated list of " | |
"numbers and range. i.e. 1,3-5,7 => [1,3,4,5,7]. When not " | |
"specified, all cores on system would be used rank binding") | |
# positional | |
parser.add_argument("training_script", | |
type=str, | |
help="The full path to the single GPU training " | |
"program/script to be launched in parallel, " | |
"followed by all the arguments for the " | |
"training script") | |
# rest from the training program | |
parser.add_argument('training_script_args', nargs=REMAINDER) | |
return parser.parse_args() | |
# Adapted from https://psutil.readthedocs.io/en/latest/#kill-process-tree | |
def terminate_process_tree(pid): | |
process = psutil.Process(pid) | |
children = process.children(recursive=True) | |
children.append(process) | |
for child in children: | |
try: | |
child.terminate() | |
except psutil.NoSuchProcess: | |
pass | |
gone, alive = psutil.wait_procs(children, timeout=30) | |
for p in alive: | |
p.kill() | |
def main(): | |
args = parse_args() | |
current_env = os.environ.copy() | |
for k in current_env.keys(): | |
if "NCCL" in k: | |
logger.info(f"{args.node_rank} {k}={current_env[k]}") | |
if args.world_info == "None": | |
raise ValueError("world_info can not be None") | |
world_info = base64.urlsafe_b64decode(args.world_info) | |
world_info = json.loads(world_info) | |
logger.info(f"WORLD INFO DICT: {world_info}") | |
node_list = list(world_info.keys()) | |
args.nnodes = len(node_list) | |
local_node = node_list[args.node_rank] | |
local_accelerator_ids = world_info[local_node] | |
num_local_procs = len(local_accelerator_ids) | |
logger.info(f"nnodes={args.nnodes}, num_local_procs={num_local_procs}, node_rank={args.node_rank}") | |
global_rank_mapping = defaultdict(list) | |
curr_global_rank = 0 | |
dist_world_size = 0 | |
for node_id in node_list: | |
gids = world_info[node_id] | |
dist_world_size += len(gids) | |
for gid in gids: | |
global_rank_mapping[node_id].append(curr_global_rank) | |
curr_global_rank += 1 | |
logger.info(f"global_rank_mapping={global_rank_mapping}") | |
logger.info(f"dist_world_size={dist_world_size}") | |
get_accelerator().set_visible_devices_envs(current_env, local_accelerator_ids) | |
for env in get_accelerator().visible_devices_envs(): | |
logger.info(f"Setting {env}={current_env[env]}") | |
# set PyTorch distributed related environmental variables | |
current_env["MASTER_ADDR"] = args.master_addr | |
current_env["MASTER_PORT"] = str(args.master_port) | |
current_env["WORLD_SIZE"] = str(dist_world_size) | |
current_env["CROSS_RANK"] = str(args.node_rank) | |
current_env["CROSS_SIZE"] = str(args.nnodes) | |
current_env["LOCAL_SIZE"] = str(num_local_procs) | |
if args.save_pid: | |
print(f"launcher pid: {os.getpid()}") | |
pid_file = None | |
if args.save_pid: | |
launcher_pid = os.getpid() | |
pid_file = os.path.join(PID_FILE_BASEPATH, f"{args.save_pid}.deepspeed") | |
assert not os.path.isfile(pid_file), "pid file exists but shouldn't" | |
with open(pid_file, 'w') as fd: | |
fd.write(f"{launcher_pid}") | |
if not is_torch_elastic_compatible(): | |
if args.enable_elastic_training: | |
logger.info(f"Disabling elastic training support as \ | |
PyTorch version should be greater than 1.11.x") | |
args.enable_elastic_training = False | |
if os.path.exists(DLTS_POD_ENV_PATH): | |
with open(DLTS_POD_ENV_PATH) as file: | |
lines = file.readlines() | |
lines = [line.rstrip() for line in lines] | |
for line in lines: | |
if line.startswith('export FC_TASKROLE_NAME') or line.startswith('export FC_TASK_INDEX'): | |
key_val = line.split()[1] | |
key, val = key_val.split('=') | |
current_env[key] = val | |
processes = [] | |
cmd = [] | |
if not args.enable_elastic_training: | |
if args.enable_each_rank_log != "None": | |
# prepare the log path and the file name prefix | |
if os.path.isfile(args.enable_each_rank_log): | |
raise ValueError(f"{args.enable_each_rank_log} should not be a file, it should be a directory.") | |
if not os.path.exists(args.enable_each_rank_log): | |
try: | |
os.makedirs(args.enable_each_rank_log) | |
except Exception as e: | |
print(e) | |
raise ValueError(f"unable to create directory {args.enable_each_rank_log} for each rank log.") | |
log_name_prefix = time.strftime("%Y%m%d%H%M%S", time.localtime()) | |
for local_proc in range(0, num_local_procs): | |
# each process's rank | |
dist_rank = global_rank_mapping[local_node][local_proc] | |
local_rank = dist_rank % num_local_procs | |
current_env["RANK"] = str(dist_rank) | |
current_env["LOCAL_RANK"] = str(local_rank) | |
# spawn the processes | |
cmd = [] | |
if args.bind_cores_to_rank: | |
cores_per_rank, numactl_cmd = get_numactl_cmd(args.bind_core_list, num_local_procs, local_rank) | |
current_env["OMP_NUM_THREADS"] = f"{cores_per_rank}" | |
cmd = cmd + numactl_cmd | |
if not args.no_python: | |
cmd.append(sys.executable) | |
cmd.append("-u") | |
if args.module: | |
cmd.append("-m") | |
else: | |
if args.module: | |
raise ValueError("Don't use both the '--no_python' flag" | |
" and the '--module' flag at the same time.") | |
cmd.append(args.training_script) | |
# A user may not want to pass local_rank as a keyword arg so we make this optional. | |
if not args.no_local_rank: | |
cmd.append(f"--local_rank={local_rank}") | |
cmd += args.training_script_args | |
if args.enable_each_rank_log != "None": | |
log_file = os.path.join(args.enable_each_rank_log, f"{log_name_prefix}_rank{dist_rank}.log") | |
log_fd = open(log_file, 'w') | |
process = subprocess.Popen(cmd, env=current_env, stdout=log_fd, stderr=log_fd) | |
else: | |
process = subprocess.Popen(cmd, env=current_env) | |
# logs the command from processes | |
logger.info(f"process {process.pid} spawned with command: {cmd}") | |
processes.append(process) | |
else: | |
from ..elasticity import DSElasticAgent | |
from torch.distributed.elastic.rendezvous import RendezvousParameters | |
from torch.distributed.elastic.agent.server.api import WorkerSpec | |
import torch.distributed.elastic.rendezvous.registry as rdzv_registry | |
from torch.distributed.elastic.multiprocessing import Std | |
if args.min_elastic_nodes == -1: | |
args.min_elastic_nodes = 1 | |
if args.max_elastic_nodes == -1: | |
args.max_elastic_nodes = args.nnodes | |
assert args.max_elastic_nodes > 0 and args.min_elastic_nodes > 0, "Max and Min nodes should be positive" | |
current_env["NCCL_ASYNC_ERROR_HANDLING"] = str(1) | |
# Get config and arguments | |
cmd = [] | |
if not args.no_python: | |
cmd = [sys.executable, "-u"] | |
if args.module: | |
cmd.append("-m") | |
else: | |
if args.module: | |
raise ValueError("Don't use both the '--no_python' flag" | |
" and the '--module' flag at the same time.") | |
cmd.append(args.training_script) | |
cmd += args.training_script_args | |
cmd_args = cmd[1:] | |
rdzv_configs: Dict[str, str] = {'timeout': 100} | |
run_id = os.environ.get("ELASTIC_RUN_ID", ELASTIC_TRAINING_ID_DEFAULT) | |
# Creating config for rendezvous class | |
rdzv_parameters = RendezvousParameters(backend='c10d', | |
endpoint=args.master_addr + ":" + str(args.master_port), | |
run_id=run_id, | |
min_nodes=args.min_elastic_nodes, | |
max_nodes=args.max_elastic_nodes, | |
**rdzv_configs) | |
spec = WorkerSpec( | |
role='trainer', | |
local_world_size=num_local_procs, | |
entrypoint=cmd[0], | |
args=cmd[1:], | |
rdzv_handler=rdzv_registry.get_rendezvous_handler(rdzv_parameters), | |
max_restarts=100, | |
monitor_interval=5, | |
redirects=Std.from_str("0"), | |
tee=Std.from_str("0"), | |
master_addr=None, | |
master_port=None, | |
) | |
agent = DSElasticAgent(spec, current_env) | |
agent.run() | |
sig_names = {2: "SIGINT", 15: "SIGTERM"} | |
last_return_code = None | |
def sigkill_handler(signum, frame): | |
for process in processes: | |
logger.info(f"Killing subprocess {process.pid}") | |
try: | |
terminate_process_tree(process.pid) | |
except Exception: | |
pass | |
if last_return_code is not None: | |
logger.error(f"{cmd} exits with return code = {last_return_code}") | |
sys.exit(last_return_code) | |
if signum in sig_names: | |
logger.info(f"Main process received {sig_names[signum]}, exiting") | |
if args.save_pid: | |
if os.path.isfile(pid_file): | |
os.remove(pid_file) | |
sys.exit(1) | |
# pass SIGINT/SIGTERM to children if the parent is being terminated | |
signal.signal(signal.SIGINT, sigkill_handler) | |
signal.signal(signal.SIGTERM, sigkill_handler) | |
alive_processes = set(processes) | |
while len(alive_processes): | |
finished_processes = [] | |
for process in alive_processes: | |
if process.poll() is None: | |
# the process is still running | |
continue | |
else: | |
if process.returncode != 0: | |
last_return_code = process.returncode # for sigkill_handler | |
sigkill_handler(signal.SIGTERM, None) # not coming back | |
else: | |
# exited cleanly | |
logger.info(f"Process {process.pid} exits successfully.") | |
finished_processes.append(process) | |
alive_processes = set(alive_processes) - set(finished_processes) | |
time.sleep(1) | |
if __name__ == "__main__": | |
main() | |