peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/huggingface_hub
/utils
/endpoint_helpers.py
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Helpful utility functions and classes in relation to exploring API endpoints | |
with the aim for a user-friendly interface. | |
""" | |
import math | |
import re | |
import warnings | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, List, Optional, Union | |
from ..repocard_data import ModelCardData | |
if TYPE_CHECKING: | |
from ..hf_api import ModelInfo | |
def _is_emission_within_treshold(model_info: "ModelInfo", minimum_threshold: float, maximum_threshold: float) -> bool: | |
"""Checks if a model's emission is within a given threshold. | |
Args: | |
model_info (`ModelInfo`): | |
A model info object containing the model's emission information. | |
minimum_threshold (`float`): | |
A minimum carbon threshold to filter by, such as 1. | |
maximum_threshold (`float`): | |
A maximum carbon threshold to filter by, such as 10. | |
Returns: | |
`bool`: Whether the model's emission is within the given threshold. | |
""" | |
if minimum_threshold is None and maximum_threshold is None: | |
raise ValueError("Both `minimum_threshold` and `maximum_threshold` cannot both be `None`") | |
if minimum_threshold is None: | |
minimum_threshold = -1 | |
if maximum_threshold is None: | |
maximum_threshold = math.inf | |
card_data = getattr(model_info, "card_data", None) | |
if card_data is None or not isinstance(card_data, (dict, ModelCardData)): | |
return False | |
# Get CO2 emission metadata | |
emission = card_data.get("co2_eq_emissions", None) | |
if isinstance(emission, dict): | |
emission = emission["emissions"] | |
if not emission: | |
return False | |
# Filter out if value is missing or out of range | |
matched = re.search(r"\d+\.\d+|\d+", str(emission)) | |
if matched is None: | |
return False | |
emission_value = float(matched.group(0)) | |
return minimum_threshold <= emission_value <= maximum_threshold | |
class DatasetFilter: | |
""" | |
A class that converts human-readable dataset search parameters into ones | |
compatible with the REST API. For all parameters capitalization does not | |
matter. | |
<Tip warning={true}> | |
The `DatasetFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_datasets`]. | |
</Tip> | |
Args: | |
author (`str`, *optional*): | |
A string that can be used to identify datasets on | |
the Hub by the original uploader (author or organization), such as | |
`facebook` or `huggingface`. | |
benchmark (`str` or `List`, *optional*): | |
A string or list of strings that can be used to identify datasets on | |
the Hub by their official benchmark. | |
dataset_name (`str`, *optional*): | |
A string or list of strings that can be used to identify datasets on | |
the Hub by its name, such as `SQAC` or `wikineural` | |
language_creators (`str` or `List`, *optional*): | |
A string or list of strings that can be used to identify datasets on | |
the Hub with how the data was curated, such as `crowdsourced` or | |
`machine_generated`. | |
language (`str` or `List`, *optional*): | |
A string or list of strings representing a two-character language to | |
filter datasets by on the Hub. | |
multilinguality (`str` or `List`, *optional*): | |
A string or list of strings representing a filter for datasets that | |
contain multiple languages. | |
size_categories (`str` or `List`, *optional*): | |
A string or list of strings that can be used to identify datasets on | |
the Hub by the size of the dataset such as `100K<n<1M` or | |
`1M<n<10M`. | |
task_categories (`str` or `List`, *optional*): | |
A string or list of strings that can be used to identify datasets on | |
the Hub by the designed task, such as `audio_classification` or | |
`named_entity_recognition`. | |
task_ids (`str` or `List`, *optional*): | |
A string or list of strings that can be used to identify datasets on | |
the Hub by the specific task such as `speech_emotion_recognition` or | |
`paraphrase`. | |
Examples: | |
```py | |
>>> from huggingface_hub import DatasetFilter | |
>>> # Using author | |
>>> new_filter = DatasetFilter(author="facebook") | |
>>> # Using benchmark | |
>>> new_filter = DatasetFilter(benchmark="raft") | |
>>> # Using dataset_name | |
>>> new_filter = DatasetFilter(dataset_name="wikineural") | |
>>> # Using language_creator | |
>>> new_filter = DatasetFilter(language_creator="crowdsourced") | |
>>> # Using language | |
>>> new_filter = DatasetFilter(language="en") | |
>>> # Using multilinguality | |
>>> new_filter = DatasetFilter(multilinguality="multilingual") | |
>>> # Using size_categories | |
>>> new_filter = DatasetFilter(size_categories="100K<n<1M") | |
>>> # Using task_categories | |
>>> new_filter = DatasetFilter(task_categories="audio_classification") | |
>>> # Using task_ids | |
>>> new_filter = DatasetFilter(task_ids="paraphrase") | |
``` | |
""" | |
author: Optional[str] = None | |
benchmark: Optional[Union[str, List[str]]] = None | |
dataset_name: Optional[str] = None | |
language_creators: Optional[Union[str, List[str]]] = None | |
language: Optional[Union[str, List[str]]] = None | |
multilinguality: Optional[Union[str, List[str]]] = None | |
size_categories: Optional[Union[str, List[str]]] = None | |
task_categories: Optional[Union[str, List[str]]] = None | |
task_ids: Optional[Union[str, List[str]]] = None | |
def __post_init__(self): | |
warnings.warn( | |
"'DatasetFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_datasets` method.", | |
category=FutureWarning, | |
) | |
class ModelFilter: | |
""" | |
A class that converts human-readable model search parameters into ones | |
compatible with the REST API. For all parameters capitalization does not | |
matter. | |
<Tip warning={true}> | |
The `ModelFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_models`]. | |
</Tip> | |
Args: | |
author (`str`, *optional*): | |
A string that can be used to identify models on the Hub by the | |
original uploader (author or organization), such as `facebook` or | |
`huggingface`. | |
library (`str` or `List`, *optional*): | |
A string or list of strings of foundational libraries models were | |
originally trained from, such as pytorch, tensorflow, or allennlp. | |
language (`str` or `List`, *optional*): | |
A string or list of strings of languages, both by name and country | |
code, such as "en" or "English" | |
model_name (`str`, *optional*): | |
A string that contain complete or partial names for models on the | |
Hub, such as "bert" or "bert-base-cased" | |
task (`str` or `List`, *optional*): | |
A string or list of strings of tasks models were designed for, such | |
as: "fill-mask" or "automatic-speech-recognition" | |
tags (`str` or `List`, *optional*): | |
A string tag or a list of tags to filter models on the Hub by, such | |
as `text-generation` or `spacy`. | |
trained_dataset (`str` or `List`, *optional*): | |
A string tag or a list of string tags of the trained dataset for a | |
model on the Hub. | |
Examples: | |
```python | |
>>> from huggingface_hub import ModelFilter | |
>>> # For the author_or_organization | |
>>> new_filter = ModelFilter(author_or_organization="facebook") | |
>>> # For the library | |
>>> new_filter = ModelFilter(library="pytorch") | |
>>> # For the language | |
>>> new_filter = ModelFilter(language="french") | |
>>> # For the model_name | |
>>> new_filter = ModelFilter(model_name="bert") | |
>>> # For the task | |
>>> new_filter = ModelFilter(task="text-classification") | |
>>> from huggingface_hub import HfApi | |
>>> api = HfApi() | |
# To list model tags | |
>>> new_filter = ModelFilter(tags="benchmark:raft") | |
>>> # Related to the dataset | |
>>> new_filter = ModelFilter(trained_dataset="common_voice") | |
``` | |
""" | |
author: Optional[str] = None | |
library: Optional[Union[str, List[str]]] = None | |
language: Optional[Union[str, List[str]]] = None | |
model_name: Optional[str] = None | |
task: Optional[Union[str, List[str]]] = None | |
trained_dataset: Optional[Union[str, List[str]]] = None | |
tags: Optional[Union[str, List[str]]] = None | |
def __post_init__(self): | |
warnings.warn( | |
"'ModelFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_models` method.", | |
FutureWarning, | |
) | |