peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/fsspec
/parquet.py
| import io | |
| import json | |
| import warnings | |
| from .core import url_to_fs | |
| from .utils import merge_offset_ranges | |
| # Parquet-Specific Utilities for fsspec | |
| # | |
| # Most of the functions defined in this module are NOT | |
| # intended for public consumption. The only exception | |
| # to this is `open_parquet_file`, which should be used | |
| # place of `fs.open()` to open parquet-formatted files | |
| # on remote file systems. | |
| def open_parquet_file( | |
| path, | |
| mode="rb", | |
| fs=None, | |
| metadata=None, | |
| columns=None, | |
| row_groups=None, | |
| storage_options=None, | |
| strict=False, | |
| engine="auto", | |
| max_gap=64_000, | |
| max_block=256_000_000, | |
| footer_sample_size=1_000_000, | |
| **kwargs, | |
| ): | |
| """ | |
| Return a file-like object for a single Parquet file. | |
| The specified parquet `engine` will be used to parse the | |
| footer metadata, and determine the required byte ranges | |
| from the file. The target path will then be opened with | |
| the "parts" (`KnownPartsOfAFile`) caching strategy. | |
| Note that this method is intended for usage with remote | |
| file systems, and is unlikely to improve parquet-read | |
| performance on local file systems. | |
| Parameters | |
| ---------- | |
| path: str | |
| Target file path. | |
| mode: str, optional | |
| Mode option to be passed through to `fs.open`. Default is "rb". | |
| metadata: Any, optional | |
| Parquet metadata object. Object type must be supported | |
| by the backend parquet engine. For now, only the "fastparquet" | |
| engine supports an explicit `ParquetFile` metadata object. | |
| If a metadata object is supplied, the remote footer metadata | |
| will not need to be transferred into local memory. | |
| fs: AbstractFileSystem, optional | |
| Filesystem object to use for opening the file. If nothing is | |
| specified, an `AbstractFileSystem` object will be inferred. | |
| engine : str, default "auto" | |
| Parquet engine to use for metadata parsing. Allowed options | |
| include "fastparquet", "pyarrow", and "auto". The specified | |
| engine must be installed in the current environment. If | |
| "auto" is specified, and both engines are installed, | |
| "fastparquet" will take precedence over "pyarrow". | |
| columns: list, optional | |
| List of all column names that may be read from the file. | |
| row_groups : list, optional | |
| List of all row-groups that may be read from the file. This | |
| may be a list of row-group indices (integers), or it may be | |
| a list of `RowGroup` metadata objects (if the "fastparquet" | |
| engine is used). | |
| storage_options : dict, optional | |
| Used to generate an `AbstractFileSystem` object if `fs` was | |
| not specified. | |
| strict : bool, optional | |
| Whether the resulting `KnownPartsOfAFile` cache should | |
| fetch reads that go beyond a known byte-range boundary. | |
| If `False` (the default), any read that ends outside a | |
| known part will be zero padded. Note that using | |
| `strict=True` may be useful for debugging. | |
| max_gap : int, optional | |
| Neighboring byte ranges will only be merged when their | |
| inter-range gap is <= `max_gap`. Default is 64KB. | |
| max_block : int, optional | |
| Neighboring byte ranges will only be merged when the size of | |
| the aggregated range is <= `max_block`. Default is 256MB. | |
| footer_sample_size : int, optional | |
| Number of bytes to read from the end of the path to look | |
| for the footer metadata. If the sampled bytes do not contain | |
| the footer, a second read request will be required, and | |
| performance will suffer. Default is 1MB. | |
| **kwargs : | |
| Optional key-word arguments to pass to `fs.open` | |
| """ | |
| # Make sure we have an `AbstractFileSystem` object | |
| # to work with | |
| if fs is None: | |
| fs = url_to_fs(path, **(storage_options or {}))[0] | |
| # For now, `columns == []` not supported. Just use | |
| # default `open` command with `path` input | |
| if columns is not None and len(columns) == 0: | |
| return fs.open(path, mode=mode) | |
| # Set the engine | |
| engine = _set_engine(engine) | |
| # Fetch the known byte ranges needed to read | |
| # `columns` and/or `row_groups` | |
| data = _get_parquet_byte_ranges( | |
| [path], | |
| fs, | |
| metadata=metadata, | |
| columns=columns, | |
| row_groups=row_groups, | |
| engine=engine, | |
| max_gap=max_gap, | |
| max_block=max_block, | |
| footer_sample_size=footer_sample_size, | |
| ) | |
| # Extract file name from `data` | |
| fn = next(iter(data)) if data else path | |
| # Call self.open with "parts" caching | |
| options = kwargs.pop("cache_options", {}).copy() | |
| return fs.open( | |
| fn, | |
| mode=mode, | |
| cache_type="parts", | |
| cache_options={ | |
| **options, | |
| "data": data.get(fn, {}), | |
| "strict": strict, | |
| }, | |
| **kwargs, | |
| ) | |
| def _get_parquet_byte_ranges( | |
| paths, | |
| fs, | |
| metadata=None, | |
| columns=None, | |
| row_groups=None, | |
| max_gap=64_000, | |
| max_block=256_000_000, | |
| footer_sample_size=1_000_000, | |
| engine="auto", | |
| ): | |
| """Get a dictionary of the known byte ranges needed | |
| to read a specific column/row-group selection from a | |
| Parquet dataset. Each value in the output dictionary | |
| is intended for use as the `data` argument for the | |
| `KnownPartsOfAFile` caching strategy of a single path. | |
| """ | |
| # Set engine if necessary | |
| if isinstance(engine, str): | |
| engine = _set_engine(engine) | |
| # Pass to specialized function if metadata is defined | |
| if metadata is not None: | |
| # Use the provided parquet metadata object | |
| # to avoid transferring/parsing footer metadata | |
| return _get_parquet_byte_ranges_from_metadata( | |
| metadata, | |
| fs, | |
| engine, | |
| columns=columns, | |
| row_groups=row_groups, | |
| max_gap=max_gap, | |
| max_block=max_block, | |
| ) | |
| # Get file sizes asynchronously | |
| file_sizes = fs.sizes(paths) | |
| # Populate global paths, starts, & ends | |
| result = {} | |
| data_paths = [] | |
| data_starts = [] | |
| data_ends = [] | |
| add_header_magic = True | |
| if columns is None and row_groups is None: | |
| # We are NOT selecting specific columns or row-groups. | |
| # | |
| # We can avoid sampling the footers, and just transfer | |
| # all file data with cat_ranges | |
| for i, path in enumerate(paths): | |
| result[path] = {} | |
| for b in range(0, file_sizes[i], max_block): | |
| data_paths.append(path) | |
| data_starts.append(b) | |
| data_ends.append(min(b + max_block, file_sizes[i])) | |
| add_header_magic = False # "Magic" should already be included | |
| else: | |
| # We ARE selecting specific columns or row-groups. | |
| # | |
| # Gather file footers. | |
| # We just take the last `footer_sample_size` bytes of each | |
| # file (or the entire file if it is smaller than that) | |
| footer_starts = [] | |
| footer_ends = [] | |
| for i, path in enumerate(paths): | |
| footer_ends.append(file_sizes[i]) | |
| sample_size = max(0, file_sizes[i] - footer_sample_size) | |
| footer_starts.append(sample_size) | |
| footer_samples = fs.cat_ranges(paths, footer_starts, footer_ends) | |
| # Check our footer samples and re-sample if necessary. | |
| missing_footer_starts = footer_starts.copy() | |
| large_footer = 0 | |
| for i, path in enumerate(paths): | |
| footer_size = int.from_bytes(footer_samples[i][-8:-4], "little") | |
| real_footer_start = file_sizes[i] - (footer_size + 8) | |
| if real_footer_start < footer_starts[i]: | |
| missing_footer_starts[i] = real_footer_start | |
| large_footer = max(large_footer, (footer_size + 8)) | |
| if large_footer: | |
| warnings.warn( | |
| f"Not enough data was used to sample the parquet footer. " | |
| f"Try setting footer_sample_size >= {large_footer}." | |
| ) | |
| for i, block in enumerate( | |
| fs.cat_ranges( | |
| paths, | |
| missing_footer_starts, | |
| footer_starts, | |
| ) | |
| ): | |
| footer_samples[i] = block + footer_samples[i] | |
| footer_starts[i] = missing_footer_starts[i] | |
| # Calculate required byte ranges for each path | |
| for i, path in enumerate(paths): | |
| # Deal with small-file case. | |
| # Just include all remaining bytes of the file | |
| # in a single range. | |
| if file_sizes[i] < max_block: | |
| if footer_starts[i] > 0: | |
| # Only need to transfer the data if the | |
| # footer sample isn't already the whole file | |
| data_paths.append(path) | |
| data_starts.append(0) | |
| data_ends.append(footer_starts[i]) | |
| continue | |
| # Use "engine" to collect data byte ranges | |
| path_data_starts, path_data_ends = engine._parquet_byte_ranges( | |
| columns, | |
| row_groups=row_groups, | |
| footer=footer_samples[i], | |
| footer_start=footer_starts[i], | |
| ) | |
| data_paths += [path] * len(path_data_starts) | |
| data_starts += path_data_starts | |
| data_ends += path_data_ends | |
| # Merge adjacent offset ranges | |
| data_paths, data_starts, data_ends = merge_offset_ranges( | |
| data_paths, | |
| data_starts, | |
| data_ends, | |
| max_gap=max_gap, | |
| max_block=max_block, | |
| sort=False, # Should already be sorted | |
| ) | |
| # Start by populating `result` with footer samples | |
| for i, path in enumerate(paths): | |
| result[path] = {(footer_starts[i], footer_ends[i]): footer_samples[i]} | |
| # Transfer the data byte-ranges into local memory | |
| _transfer_ranges(fs, result, data_paths, data_starts, data_ends) | |
| # Add b"PAR1" to header if necessary | |
| if add_header_magic: | |
| _add_header_magic(result) | |
| return result | |
| def _get_parquet_byte_ranges_from_metadata( | |
| metadata, | |
| fs, | |
| engine, | |
| columns=None, | |
| row_groups=None, | |
| max_gap=64_000, | |
| max_block=256_000_000, | |
| ): | |
| """Simplified version of `_get_parquet_byte_ranges` for | |
| the case that an engine-specific `metadata` object is | |
| provided, and the remote footer metadata does not need to | |
| be transferred before calculating the required byte ranges. | |
| """ | |
| # Use "engine" to collect data byte ranges | |
| data_paths, data_starts, data_ends = engine._parquet_byte_ranges( | |
| columns, | |
| row_groups=row_groups, | |
| metadata=metadata, | |
| ) | |
| # Merge adjacent offset ranges | |
| data_paths, data_starts, data_ends = merge_offset_ranges( | |
| data_paths, | |
| data_starts, | |
| data_ends, | |
| max_gap=max_gap, | |
| max_block=max_block, | |
| sort=False, # Should be sorted | |
| ) | |
| # Transfer the data byte-ranges into local memory | |
| result = {fn: {} for fn in list(set(data_paths))} | |
| _transfer_ranges(fs, result, data_paths, data_starts, data_ends) | |
| # Add b"PAR1" to header | |
| _add_header_magic(result) | |
| return result | |
| def _transfer_ranges(fs, blocks, paths, starts, ends): | |
| # Use cat_ranges to gather the data byte_ranges | |
| ranges = (paths, starts, ends) | |
| for path, start, stop, data in zip(*ranges, fs.cat_ranges(*ranges)): | |
| blocks[path][(start, stop)] = data | |
| def _add_header_magic(data): | |
| # Add b"PAR1" to file headers | |
| for path in list(data.keys()): | |
| add_magic = True | |
| for k in data[path].keys(): | |
| if k[0] == 0 and k[1] >= 4: | |
| add_magic = False | |
| break | |
| if add_magic: | |
| data[path][(0, 4)] = b"PAR1" | |
| def _set_engine(engine_str): | |
| # Define a list of parquet engines to try | |
| if engine_str == "auto": | |
| try_engines = ("fastparquet", "pyarrow") | |
| elif not isinstance(engine_str, str): | |
| raise ValueError( | |
| "Failed to set parquet engine! " | |
| "Please pass 'fastparquet', 'pyarrow', or 'auto'" | |
| ) | |
| elif engine_str not in ("fastparquet", "pyarrow"): | |
| raise ValueError(f"{engine_str} engine not supported by `fsspec.parquet`") | |
| else: | |
| try_engines = [engine_str] | |
| # Try importing the engines in `try_engines`, | |
| # and choose the first one that succeeds | |
| for engine in try_engines: | |
| try: | |
| if engine == "fastparquet": | |
| return FastparquetEngine() | |
| elif engine == "pyarrow": | |
| return PyarrowEngine() | |
| except ImportError: | |
| pass | |
| # Raise an error if a supported parquet engine | |
| # was not found | |
| raise ImportError( | |
| f"The following parquet engines are not installed " | |
| f"in your python environment: {try_engines}." | |
| f"Please install 'fastparquert' or 'pyarrow' to " | |
| f"utilize the `fsspec.parquet` module." | |
| ) | |
| class FastparquetEngine: | |
| # The purpose of the FastparquetEngine class is | |
| # to check if fastparquet can be imported (on initialization) | |
| # and to define a `_parquet_byte_ranges` method. In the | |
| # future, this class may also be used to define other | |
| # methods/logic that are specific to fastparquet. | |
| def __init__(self): | |
| import fastparquet as fp | |
| self.fp = fp | |
| def _row_group_filename(self, row_group, pf): | |
| return pf.row_group_filename(row_group) | |
| def _parquet_byte_ranges( | |
| self, | |
| columns, | |
| row_groups=None, | |
| metadata=None, | |
| footer=None, | |
| footer_start=None, | |
| ): | |
| # Initialize offset ranges and define ParqetFile metadata | |
| pf = metadata | |
| data_paths, data_starts, data_ends = [], [], [] | |
| if pf is None: | |
| pf = self.fp.ParquetFile(io.BytesIO(footer)) | |
| # Convert columns to a set and add any index columns | |
| # specified in the pandas metadata (just in case) | |
| column_set = None if columns is None else set(columns) | |
| if column_set is not None and hasattr(pf, "pandas_metadata"): | |
| md_index = [ | |
| ind | |
| for ind in pf.pandas_metadata.get("index_columns", []) | |
| # Ignore RangeIndex information | |
| if not isinstance(ind, dict) | |
| ] | |
| column_set |= set(md_index) | |
| # Check if row_groups is a list of integers | |
| # or a list of row-group metadata | |
| if row_groups and not isinstance(row_groups[0], int): | |
| # Input row_groups contains row-group metadata | |
| row_group_indices = None | |
| else: | |
| # Input row_groups contains row-group indices | |
| row_group_indices = row_groups | |
| row_groups = pf.row_groups | |
| # Loop through column chunks to add required byte ranges | |
| for r, row_group in enumerate(row_groups): | |
| # Skip this row-group if we are targeting | |
| # specific row-groups | |
| if row_group_indices is None or r in row_group_indices: | |
| # Find the target parquet-file path for `row_group` | |
| fn = self._row_group_filename(row_group, pf) | |
| for column in row_group.columns: | |
| name = column.meta_data.path_in_schema[0] | |
| # Skip this column if we are targeting a | |
| # specific columns | |
| if column_set is None or name in column_set: | |
| file_offset0 = column.meta_data.dictionary_page_offset | |
| if file_offset0 is None: | |
| file_offset0 = column.meta_data.data_page_offset | |
| num_bytes = column.meta_data.total_compressed_size | |
| if footer_start is None or file_offset0 < footer_start: | |
| data_paths.append(fn) | |
| data_starts.append(file_offset0) | |
| data_ends.append( | |
| min( | |
| file_offset0 + num_bytes, | |
| footer_start or (file_offset0 + num_bytes), | |
| ) | |
| ) | |
| if metadata: | |
| # The metadata in this call may map to multiple | |
| # file paths. Need to include `data_paths` | |
| return data_paths, data_starts, data_ends | |
| return data_starts, data_ends | |
| class PyarrowEngine: | |
| # The purpose of the PyarrowEngine class is | |
| # to check if pyarrow can be imported (on initialization) | |
| # and to define a `_parquet_byte_ranges` method. In the | |
| # future, this class may also be used to define other | |
| # methods/logic that are specific to pyarrow. | |
| def __init__(self): | |
| import pyarrow.parquet as pq | |
| self.pq = pq | |
| def _row_group_filename(self, row_group, metadata): | |
| raise NotImplementedError | |
| def _parquet_byte_ranges( | |
| self, | |
| columns, | |
| row_groups=None, | |
| metadata=None, | |
| footer=None, | |
| footer_start=None, | |
| ): | |
| if metadata is not None: | |
| raise ValueError("metadata input not supported for PyarrowEngine") | |
| data_starts, data_ends = [], [] | |
| md = self.pq.ParquetFile(io.BytesIO(footer)).metadata | |
| # Convert columns to a set and add any index columns | |
| # specified in the pandas metadata (just in case) | |
| column_set = None if columns is None else set(columns) | |
| if column_set is not None: | |
| schema = md.schema.to_arrow_schema() | |
| has_pandas_metadata = ( | |
| schema.metadata is not None and b"pandas" in schema.metadata | |
| ) | |
| if has_pandas_metadata: | |
| md_index = [ | |
| ind | |
| for ind in json.loads( | |
| schema.metadata[b"pandas"].decode("utf8") | |
| ).get("index_columns", []) | |
| # Ignore RangeIndex information | |
| if not isinstance(ind, dict) | |
| ] | |
| column_set |= set(md_index) | |
| # Loop through column chunks to add required byte ranges | |
| for r in range(md.num_row_groups): | |
| # Skip this row-group if we are targeting | |
| # specific row-groups | |
| if row_groups is None or r in row_groups: | |
| row_group = md.row_group(r) | |
| for c in range(row_group.num_columns): | |
| column = row_group.column(c) | |
| name = column.path_in_schema | |
| # Skip this column if we are targeting a | |
| # specific columns | |
| split_name = name.split(".")[0] | |
| if ( | |
| column_set is None | |
| or name in column_set | |
| or split_name in column_set | |
| ): | |
| file_offset0 = column.dictionary_page_offset | |
| if file_offset0 is None: | |
| file_offset0 = column.data_page_offset | |
| num_bytes = column.total_compressed_size | |
| if file_offset0 < footer_start: | |
| data_starts.append(file_offset0) | |
| data_ends.append( | |
| min(file_offset0 + num_bytes, footer_start) | |
| ) | |
| return data_starts, data_ends | |