peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/byte_level_bpe.py
| from typing import Dict, Iterator, List, Optional, Tuple, Union | |
| from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers | |
| from tokenizers.models import BPE | |
| from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str | |
| from .base_tokenizer import BaseTokenizer | |
| class ByteLevelBPETokenizer(BaseTokenizer): | |
| """ByteLevelBPETokenizer | |
| Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model | |
| """ | |
| def __init__( | |
| self, | |
| vocab: Optional[Union[str, Dict[str, int]]] = None, | |
| merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, | |
| add_prefix_space: bool = False, | |
| lowercase: bool = False, | |
| dropout: Optional[float] = None, | |
| unicode_normalizer: Optional[str] = None, | |
| continuing_subword_prefix: Optional[str] = None, | |
| end_of_word_suffix: Optional[str] = None, | |
| trim_offsets: bool = False, | |
| ): | |
| if vocab is not None and merges is not None: | |
| tokenizer = Tokenizer( | |
| BPE( | |
| vocab, | |
| merges, | |
| dropout=dropout, | |
| continuing_subword_prefix=continuing_subword_prefix or "", | |
| end_of_word_suffix=end_of_word_suffix or "", | |
| ) | |
| ) | |
| else: | |
| tokenizer = Tokenizer(BPE()) | |
| # Check for Unicode normalization first (before everything else) | |
| normalizers = [] | |
| if unicode_normalizer: | |
| normalizers += [unicode_normalizer_from_str(unicode_normalizer)] | |
| if lowercase: | |
| normalizers += [Lowercase()] | |
| # Create the normalizer structure | |
| if len(normalizers) > 0: | |
| if len(normalizers) > 1: | |
| tokenizer.normalizer = Sequence(normalizers) | |
| else: | |
| tokenizer.normalizer = normalizers[0] | |
| tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space) | |
| tokenizer.decoder = decoders.ByteLevel() | |
| tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets) | |
| parameters = { | |
| "model": "ByteLevelBPE", | |
| "add_prefix_space": add_prefix_space, | |
| "lowercase": lowercase, | |
| "dropout": dropout, | |
| "unicode_normalizer": unicode_normalizer, | |
| "continuing_subword_prefix": continuing_subword_prefix, | |
| "end_of_word_suffix": end_of_word_suffix, | |
| "trim_offsets": trim_offsets, | |
| } | |
| super().__init__(tokenizer, parameters) | |
| def from_file(vocab_filename: str, merges_filename: str, **kwargs): | |
| vocab, merges = BPE.read_file(vocab_filename, merges_filename) | |
| return ByteLevelBPETokenizer(vocab, merges, **kwargs) | |
| def train( | |
| self, | |
| files: Union[str, List[str]], | |
| vocab_size: int = 30000, | |
| min_frequency: int = 2, | |
| show_progress: bool = True, | |
| special_tokens: List[Union[str, AddedToken]] = [], | |
| ): | |
| """Train the model using the given files""" | |
| trainer = trainers.BpeTrainer( | |
| vocab_size=vocab_size, | |
| min_frequency=min_frequency, | |
| show_progress=show_progress, | |
| special_tokens=special_tokens, | |
| initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), | |
| ) | |
| if isinstance(files, str): | |
| files = [files] | |
| self._tokenizer.train(files, trainer=trainer) | |
| def train_from_iterator( | |
| self, | |
| iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
| vocab_size: int = 30000, | |
| min_frequency: int = 2, | |
| show_progress: bool = True, | |
| special_tokens: List[Union[str, AddedToken]] = [], | |
| length: Optional[int] = None, | |
| ): | |
| """Train the model using the given iterator""" | |
| trainer = trainers.BpeTrainer( | |
| vocab_size=vocab_size, | |
| min_frequency=min_frequency, | |
| show_progress=show_progress, | |
| special_tokens=special_tokens, | |
| initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), | |
| ) | |
| self._tokenizer.train_from_iterator( | |
| iterator, | |
| trainer=trainer, | |
| length=length, | |
| ) | |