peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/sentencepiece_bpe.py
| from typing import Dict, Iterator, List, Optional, Tuple, Union | |
| from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers | |
| from tokenizers.models import BPE | |
| from tokenizers.normalizers import NFKC | |
| from .base_tokenizer import BaseTokenizer | |
| class SentencePieceBPETokenizer(BaseTokenizer): | |
| """SentencePiece BPE Tokenizer | |
| Represents the BPE algorithm, with the pretokenization used by SentencePiece | |
| """ | |
| def __init__( | |
| self, | |
| vocab: Optional[Union[str, Dict[str, int]]] = None, | |
| merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, | |
| unk_token: Union[str, AddedToken] = "<unk>", | |
| replacement: str = "▁", | |
| add_prefix_space: bool = True, | |
| dropout: Optional[float] = None, | |
| fuse_unk: Optional[bool] = False, | |
| ): | |
| if vocab is not None and merges is not None: | |
| tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) | |
| else: | |
| tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) | |
| if tokenizer.token_to_id(str(unk_token)) is not None: | |
| tokenizer.add_special_tokens([str(unk_token)]) | |
| tokenizer.normalizer = NFKC() | |
| prepend_scheme = "always" if add_prefix_space else "never" | |
| tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
| tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
| parameters = { | |
| "model": "SentencePieceBPE", | |
| "unk_token": unk_token, | |
| "replacement": replacement, | |
| "add_prefix_space": add_prefix_space, | |
| "dropout": dropout, | |
| } | |
| super().__init__(tokenizer, parameters) | |
| def from_file(vocab_filename: str, merges_filename: str, **kwargs): | |
| vocab, merges = BPE.read_file(vocab_filename, merges_filename) | |
| return SentencePieceBPETokenizer(vocab, merges, **kwargs) | |
| def train( | |
| self, | |
| files: Union[str, List[str]], | |
| vocab_size: int = 30000, | |
| min_frequency: int = 2, | |
| special_tokens: List[Union[str, AddedToken]] = ["<unk>"], | |
| limit_alphabet: int = 1000, | |
| initial_alphabet: List[str] = [], | |
| show_progress: bool = True, | |
| ): | |
| """Train the model using the given files""" | |
| trainer = trainers.BpeTrainer( | |
| vocab_size=vocab_size, | |
| min_frequency=min_frequency, | |
| special_tokens=special_tokens, | |
| limit_alphabet=limit_alphabet, | |
| initial_alphabet=initial_alphabet, | |
| show_progress=show_progress, | |
| ) | |
| if isinstance(files, str): | |
| files = [files] | |
| self._tokenizer.train(files, trainer=trainer) | |
| def train_from_iterator( | |
| self, | |
| iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
| vocab_size: int = 30000, | |
| min_frequency: int = 2, | |
| special_tokens: List[Union[str, AddedToken]] = ["<unk>"], | |
| limit_alphabet: int = 1000, | |
| initial_alphabet: List[str] = [], | |
| show_progress: bool = True, | |
| length: Optional[int] = None, | |
| ): | |
| """Train the model using the given iterator""" | |
| trainer = trainers.BpeTrainer( | |
| vocab_size=vocab_size, | |
| min_frequency=min_frequency, | |
| special_tokens=special_tokens, | |
| limit_alphabet=limit_alphabet, | |
| initial_alphabet=initial_alphabet, | |
| show_progress=show_progress, | |
| ) | |
| self._tokenizer.train_from_iterator( | |
| iterator, | |
| trainer=trainer, | |
| length=length, | |
| ) | |