peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/comm
/comm.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| """ | |
| DeepSpeed Communication Package: deepspeed.comm | |
| deepspeed.comm | |
| -- import and use deepspeed.ops.comm | |
| -- use torch.distributed directly if both this package and torch.distributed use the same NCCL version | |
| -- use custom collectives | |
| -- can either use torch.dist or ds.ops.comm? | |
| Note: the old 1-bit compressed allreduce variants that resided in deepspeed.runtime.comm will be moved here as well. | |
| deepspeed.comm API | |
| -- must be kept fully compatible (same signatures) as torch.dist API to ensure backward/cross-framework compatibility. | |
| -- e.g. if a client code used | |
| from deepspeed import comm as dist | |
| instead of | |
| import torch.distributed as dist | |
| The code should work without breaking any of the public torch.distributed functionality | |
| Future: | |
| -- deepspeed groups API should be brought into ds.comm | |
| """ | |
| import torch | |
| import os | |
| from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT, default_pg_timeout | |
| from .constants import * | |
| from .reduce_op import * | |
| from deepspeed.accelerator import get_accelerator | |
| from deepspeed.comm.ccl import CCLBackend | |
| from deepspeed.utils.comms_logging import CommsLogger | |
| from deepspeed.utils import timer, get_caller_func | |
| from deepspeed.comm.torch import TorchBackend | |
| from deepspeed import utils | |
| from datetime import timedelta | |
| # Current deepspeed.comm backend (cdb) global object for simple access by client code | |
| cdb = None | |
| # Create global timer for ops | |
| timers = timer.SynchronizedWallClockTimer() | |
| timer_summary = {} | |
| comms_logger = CommsLogger() | |
| # Maintain objects of all initialized ds backends and assign them using the API functions in this file | |
| nccl_backend = None | |
| mpi_backend = None | |
| ccl_backend = None | |
| hccl_backend = None | |
| # This should be set here so all rank/size information from the launcher can be propagated | |
| from deepspeed.comm.utils import * | |
| class ProcessGroup(): | |
| def __init__(self, comm_id, ranks=[]): | |
| self.ranks = ranks | |
| self.comm_id = comm_id | |
| self.size = len(ranks) | |
| def _configure_using_config_file(config): | |
| if config.comms_logger_enabled: | |
| comms_logger.configure(config) | |
| def configure( | |
| deepspeed_config=None, | |
| enabled=None, | |
| prof_all=None, | |
| prof_ops=None, | |
| verbose=None, | |
| debug=None, | |
| ): | |
| if deepspeed_config is not None: | |
| _configure_using_config_file(deepspeed_config.comms_config) | |
| if enabled is not None: | |
| comms_logger.enabled = enabled | |
| if prof_all is not None: | |
| comms_logger.prof_all = prof_all | |
| if prof_ops is not None: | |
| comms_logger.prof_ops = prof_ops | |
| if verbose is not None: | |
| comms_logger.verbose = verbose | |
| if debug is not None: | |
| comms_logger.debug = debug | |
| # Logging wrapper for timing ops | |
| def timed_op(func): | |
| def log_wrapper(*args, **kwargs): | |
| # Add enabled flag so that overhead to each comm op is two if conditions at most | |
| if comms_logger.enabled: | |
| if ('prof' in kwargs | |
| and kwargs['prof']) or comms_logger.prof_all or ('log_name' in kwargs | |
| and kwargs['log_name'] in comms_logger.prof_ops): | |
| # Need func args for their defaults | |
| func_args = get_default_args(func) | |
| func_args.update(kwargs) | |
| msg_size = get_msg_size_from_args(func, *args, **kwargs) | |
| log_name = get_debug_log_name(func_args, comms_logger.debug) | |
| timers(log_name).start() | |
| # Return the op, then stop the op's timer | |
| try: | |
| return func(*args, **kwargs) | |
| finally: | |
| if comms_logger.enabled: | |
| # Need to make op blocking for accurate logging | |
| get_accelerator().synchronize() | |
| # If we're using MPI, we can't simply sync the stream | |
| if cdb.using_mpi: | |
| cdb.barrier() | |
| if ('prof' in kwargs and kwargs['prof']) or comms_logger.prof_all or ( | |
| 'log_name' in kwargs and kwargs['log_name'] in comms_logger.prof_ops): | |
| log_name = get_debug_log_name(func_args, comms_logger.debug) | |
| raw_name = func.__name__ | |
| timers(log_name).stop() | |
| # need temp var since 'elapsed' resets events | |
| time_elapsed = timers(log_name).elapsed(reset=False) | |
| comms_logger.append(raw_name, log_name, time_elapsed, msg_size) | |
| return log_wrapper | |
| # For compatibility with torch distributed's init_process_group, we shall retain the signature from PyTorch code. | |
| # DeepSpeed NCCL/MPI backend may not need all these params as we will have our own implementation. | |
| # Please read full torch.distributed API docs from https://pytorch.org/docs/stable/distributed.html | |
| # UNUSED: Future helper function to initialize DS backends | |
| def init_deepspeed_backend(ds_backend, timeout, init_method): | |
| global cdb | |
| global nccl_backend | |
| global mpi_backend | |
| global ccl_backend | |
| global hccl_backend | |
| rank = int(os.getenv('RANK', '-1')) | |
| size = int(os.getenv('WORLD_SIZE', '-1')) | |
| if ds_backend == NCCL_BACKEND: | |
| utils.logger.debug("NCCL backend in DeepSpeed not yet implemented") | |
| elif ds_backend == MPI_BACKEND: | |
| utils.logger.debug("MPI backend in DeepSpeed not yet implemented") | |
| elif ds_backend == GLOO_BACKEND: | |
| utils.logger.debug("Gloo backend in DeepSpeed not yet implemented") | |
| elif ds_backend == CCL_BACKEND: | |
| ccl_backend = CCLBackend(rank=rank, world_size=size, timeout=timeout, init_method=init_method) | |
| utils.logger.info(f"Initialize {ds_backend} backend") | |
| elif ds_backend == HCCL_BACKEND: | |
| utils.logger.debug("HCCL backend in DeepSpeed not yet implemented") | |
| else: | |
| utils.logger.debug(f"DeepSpeed does not support {ds_backend} backend") | |
| def is_initialized(): | |
| #assert cdb is not None, 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| if cdb is None: | |
| return False | |
| else: | |
| return cdb.is_initialized() | |
| def destroy_process_group(group=None): | |
| global cdb | |
| return cdb.destroy_process_group(group=group) | |
| def new_group(ranks): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.new_group(ranks) | |
| def is_available() -> bool: | |
| # Returns ``True`` if the deepspeed comm package is available. | |
| # TODO: load other ops. Clients including deepspeed itself should use deepspeed.comm to import | |
| # any communication related primitives from this package. | |
| # use hasattr(deepspeed.csrc.ops, "_comm") or something | |
| return True | |
| def set_backend(): | |
| global cdb | |
| global nccl_backend | |
| global mpi_backend | |
| global ccl_backend | |
| global hccl_backend | |
| backend_name = get_accelerator().communication_backend_name() | |
| if backend_name == NCCL_BACKEND: | |
| if nccl_backend is not None and nccl_backend.is_initialized(): | |
| cdb = nccl_backend | |
| elif backend_name == MPI_BACKEND: | |
| if mpi_backend is not None and mpi_backend.is_initialized(): | |
| cdb = mpi_backend | |
| elif backend_name == CCL_BACKEND: | |
| if ccl_backend is not None and ccl_backend.is_initialized(): | |
| cdb = ccl_backend | |
| elif backend_name == HCCL_BACKEND: | |
| if hccl_backend is not None and hccl_backend.is_initialized(): | |
| cdb = hccl_backend | |
| def broadcast(tensor, src, group=None, async_op=False, prof=False, log_name='broadcast', debug=get_caller_func()): | |
| global cdb | |
| return cdb.broadcast(tensor=tensor, src=src, group=group, async_op=async_op) | |
| def all_gather(tensor_list, | |
| tensor, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='all_gather', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.all_gather(tensor_list=tensor_list, tensor=tensor, group=group, async_op=async_op) | |
| def has_reduce_scatter_tensor(): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.has_reduce_scatter_tensor() | |
| def reduce_scatter_fn(output_tensor, | |
| tensor, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| debug=get_caller_func()): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| if cdb.has_reduce_scatter_tensor(): | |
| return reduce_scatter_tensor(output_tensor, | |
| tensor, | |
| op=op, | |
| group=group, | |
| async_op=async_op, | |
| prof=prof, | |
| debug=debug) | |
| else: | |
| if get_rank() == 0: | |
| utils.logger.warning_once("unable to find torch.distributed.reduce_scatter_tensor. will fall back to " | |
| "torch.distributed.reduce_scatter which will result in suboptimal performance. " | |
| "please consider upgrading your pytorch installation.") | |
| input_tensor_lst = list(torch.chunk(tensor, cdb.get_world_size(group))) | |
| return reduce_scatter(output_tensor, | |
| input_tensor_lst, | |
| op=op, | |
| group=group, | |
| async_op=async_op, | |
| prof=prof, | |
| debug=debug) | |
| def reduce_scatter_tensor(output_tensor, | |
| tensor, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='reduce_scatter_tensor', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.reduce_scatter_tensor(output_tensor=output_tensor, | |
| input_tensor=tensor, | |
| op=op, | |
| group=group, | |
| async_op=async_op) | |
| def all_gather_into_tensor(output_tensor, | |
| tensor, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='all_gather_into_tensor', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.all_gather_into_tensor(output_tensor=output_tensor, input_tensor=tensor, group=group, async_op=async_op) | |
| def has_all_gather_into_tensor(): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.has_all_gather_into_tensor() | |
| def allgather_fn(output_tensor, input_tensor, group=None, async_op=False, debug=get_caller_func()): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| if cdb.has_all_gather_into_tensor(): | |
| return all_gather_into_tensor(output_tensor, input_tensor, group=group, async_op=async_op, debug=debug) | |
| else: | |
| if get_rank() == 0: | |
| utils.logger.warning_once("unable to find torch.distributed.all_gather_into_tensor. will fall back to " | |
| "torch.distributed.all_gather which will result in suboptimal performance. " | |
| "please consider upgrading your pytorch installation.") | |
| output_tensors = list(torch.chunk(output_tensor, cdb.get_world_size(group))) | |
| return all_gather(output_tensors, input_tensor, group=group, async_op=async_op, debug=debug) | |
| def all_to_all_single(output, | |
| tensor, | |
| output_split_sizes=None, | |
| input_split_sizes=None, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='all_to_all_single', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.all_to_all_single(output=output, | |
| input=tensor, | |
| output_split_sizes=output_split_sizes, | |
| input_split_sizes=input_split_sizes, | |
| group=group, | |
| async_op=async_op) | |
| def all_to_all(output_tensor_list, input_tensor_list, group=None, async_op=False): | |
| global cdb | |
| return cdb.all_to_all(output_tensor_list, input_tensor_list, group=group, async_op=async_op) | |
| def send(tensor, dst, group=None, tag=0, prof=False, log_name='send', debug=get_caller_func()): | |
| global cdb | |
| return cdb.send(tensor=tensor, dst=dst, group=group, tag=tag) | |
| def recv(tensor, src=None, group=None, tag=0, prof=False, log_name='recv', debug=get_caller_func()): | |
| global cdb | |
| return cdb.recv(tensor=tensor, src=src, group=group, tag=tag) | |
| def isend(tensor, dst, group=None, tag=0, prof=False, log_name='isend', debug=get_caller_func()): | |
| global cdb | |
| return cdb.send(tensor=tensor, dst=dst, group=group, tag=tag) | |
| def irecv(tensor, src=None, group=None, tag=0, prof=False, log_name='irecv', debug=get_caller_func()): | |
| global cdb | |
| return cdb.recv(tensor=tensor, src=src, group=group, tag=tag) | |
| def gather(tensor, | |
| gather_list=None, | |
| dst=0, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='gather', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.gather(tensor=tensor, gather_list=gather_list, dst=dst, group=group, async_op=async_op) | |
| def scatter(tensor, | |
| scatter_list=None, | |
| src=0, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='scatter', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.scatter(tensor=tensor, scatter_list=scatter_list, src=src, group=group, async_op=async_op) | |
| def barrier(group=None, async_op=False, device_ids=None, prof=False, log_name='barrier', debug=get_caller_func()): | |
| global cdb | |
| return cdb.barrier(group=group, async_op=async_op) | |
| def monitored_barrier(group=None, | |
| timeout=None, | |
| wait_all_ranks=False, | |
| prof=False, | |
| log_name='monitored_barrier', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.monitored_barrier(group=group, timeout=timeout, wait_all_ranks=wait_all_ranks) | |
| def log_summary(show_straggler=False): | |
| global cdb | |
| barrier(log_name='log_summary_barrier') | |
| if cdb.get_rank() == 0: | |
| comms_logger.log_all(print_log=True, show_straggler=show_straggler) | |
| else: | |
| comms_logger.log_all(print_log=False, show_straggler=show_straggler) | |
| barrier(log_name='log_summary_barrier') | |
| def reduce(tensor, | |
| dst, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='reduce', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.reduce(tensor=tensor, dst=dst, op=op, group=group, async_op=async_op) | |
| def reduce_scatter(output, | |
| input_list, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='reduce_scatter', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.reduce_scatter(output=output, input_list=input_list, op=op, group=group, async_op=async_op) | |
| def has_all_reduce_coalesced(): | |
| """""" | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| assert cdb.has_all_reduce_coalesced is not None, 'has_all_reduce_coalesced is not yet defined' | |
| return cdb.has_all_reduce_coalesced | |
| def has_coalescing_manager(): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| assert cdb.has_coalescing_manager is not None, 'has_coalescing_manager is not yet defined' | |
| return cdb.has_coalescing_manager | |
| def all_gather_coalesced(output_tensors, input_tensors, group=None, async_op=False): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.all_gather_coalesced(output_tensors, input_tensors, group=group, async_op=async_op) | |
| def all_reduce(tensor, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='all_reduce', | |
| debug=get_caller_func()): | |
| #if profile_comm: | |
| # context of the timers? | |
| # timers.start() | |
| # TensorBoard logging for comm calls.? | |
| global cdb | |
| #print(f'op = {op}, cdb= {cdb.name}') | |
| return cdb.all_reduce(tensor, op, group, async_op) | |
| def inference_all_reduce(tensor, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='all_reduce', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.inference_all_reduce(tensor, op, group) | |
| def all_reduce_coalesced(tensors, | |
| op=ReduceOp.SUM, | |
| group=None, | |
| async_op=False, | |
| prof=False, | |
| log_name='all_reduce', | |
| debug=get_caller_func()): | |
| global cdb | |
| return cdb.all_reduce_coalesced(tensors, op, group, async_op) | |
| def get_world_group(): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.get_world_group() | |
| def get_world_size(group=None) -> int: | |
| """ | |
| Returns the number of processes in the current process group | |
| Args: | |
| group (ProcessGroup, optional): The process group to work on. If None, | |
| the default process group will be used. | |
| Returns: | |
| The world size of the process group | |
| -1, if not part of the group | |
| """ | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.get_world_size(group) | |
| def get_rank(group=None): | |
| """ | |
| Returns the rank of the current process in the provided ``group`` or the | |
| default group if none was provided. | |
| Rank is a unique identifier assigned to each process within a distributed | |
| process group. They are always consecutive integers ranging from 0 to | |
| ``world_size``. | |
| Args: | |
| group (ProcessGroup, optional): The process group to work on. If None, | |
| the default process group will be used. | |
| Returns: | |
| The rank of the process group | |
| -1, if not part of the group | |
| """ | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.get_rank(group) | |
| def get_local_rank(): | |
| """ | |
| Helper function to get local rank after a backend has been set and initialized | |
| Args: | |
| None | |
| Returns: | |
| local rank (= GPU device ID) | |
| """ | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return get_local_rank_from_launcher() | |
| def get_global_rank(group=None, group_rank=0): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| return cdb.get_global_rank(group, group_rank) | |
| def get_all_ranks_from_group(group=None): | |
| global cdb | |
| assert cdb is not None and cdb.is_initialized( | |
| ), 'DeepSpeed backend not set, please initialize it using init_process_group()' | |
| rank = 0 | |
| group_ranks = [] | |
| try: | |
| while True: | |
| group_ranks.append(cdb.get_global_rank(group, rank)) | |
| rank += 1 | |
| except (RuntimeError, ValueError): | |
| pass | |
| return group_ranks | |
| # Main DeepSpeed Comms. public API. | |
| def init_distributed(dist_backend=None, | |
| auto_mpi_discovery=True, | |
| distributed_port=TORCH_DISTRIBUTED_DEFAULT_PORT, | |
| verbose=True, | |
| timeout=default_pg_timeout, | |
| init_method=None, | |
| dist_init_required=None, | |
| config=None, | |
| rank=-1, | |
| world_size=-1): | |
| ''' Initialize dist backend, potentially performing MPI discovery if needed | |
| Arguments: | |
| dist_backend: Optional (str). torch distributed backend, e.g., nccl, mpi, gloo, hccl | |
| auto_mpi_discovery Optional (bool). if distributed environment variables are not set, attempt to discover them from MPI | |
| distributed_port: Optional (int). torch distributed backend port | |
| verbose: Optional (bool). verbose logging | |
| timeout: Optional (timedelta). Timeout for operations executed against the process group. Default value equals 30 minutes. | |
| init_method: Optional (string). Torch distributed, URL specifying how to initialize the process group. Default is “env://” if no init_method or store is specified. | |
| config: Optional (dict). DeepSpeed configuration for setting up comms options (e.g. Comms profiling) | |
| rank: Optional (int). The current manually specified rank. Some init_method like “tcp://” need the rank and world_size as well (see: https://pytorch.org/docs/stable/distributed.html#tcp-initialization) | |
| world_size: Optional (int). Desired world_size for the TCP or Shared file-system initialization. | |
| ''' | |
| global cdb | |
| configure(deepspeed_config=config) | |
| if dist_init_required is None: | |
| dist_init_required = cdb is None or not cdb.is_initialized() | |
| if cdb is None: | |
| init_deepspeed_backend(get_accelerator().communication_backend_name(), timeout, init_method) | |
| set_backend() | |
| utils.logger.info(f'cdb={cdb}') | |
| if cdb is None and torch.distributed.is_initialized(): | |
| # The user initialized torch.dist themselves, create cdb and short-circuit | |
| cdb = TorchBackend(dist_backend, timeout, init_method) | |
| return | |
| if dist_init_required is False: | |
| assert ( | |
| cdb is not None and cdb.is_initialized() is True | |
| ), "Distributed backend is not initialized. Please set dist_init_required to True or initialize before calling deepspeed.initialize()" | |
| else: | |
| # Initialize torch distributed if needed | |
| required_env = ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] | |
| if auto_mpi_discovery and not all(map(lambda v: v in os.environ, required_env)): | |
| if verbose: | |
| utils.logger.info("Not using the DeepSpeed or dist launchers, attempting to detect MPI environment...") | |
| if in_aml() and not in_dlts(): | |
| patch_aml_env_for_torch_nccl_backend(verbose=verbose) | |
| elif in_aws_sm(): | |
| patch_aws_sm_env_for_torch_nccl_backend(verbose=verbose) | |
| else: | |
| mpi_discovery(distributed_port=distributed_port, verbose=verbose) | |
| if cdb is not None and cdb.is_initialized(): | |
| if int(os.getenv('RANK', '0')) == 0: | |
| utils.logger.info('Distributed backend already initialized') | |
| else: | |
| assert isinstance(timeout, timedelta) | |
| if dist_backend is None: | |
| dist_backend = get_accelerator().communication_backend_name() | |
| if int(os.getenv('RANK', '0')) == 0: | |
| utils.logger.info('Initializing TorchBackend in DeepSpeed with backend {}'.format(dist_backend)) | |
| # Create a torch backend object, initialize torch distributed, and assign to cdb | |
| cdb = TorchBackend(dist_backend, timeout, init_method, rank, world_size) | |
| def mpi_discovery(distributed_port=TORCH_DISTRIBUTED_DEFAULT_PORT, verbose=True): | |
| ''' | |
| Discovery MPI environment via mpi4py and map to relevant dist state | |
| ''' | |
| from mpi4py import MPI | |
| import subprocess | |
| comm = MPI.COMM_WORLD | |
| rank = comm.Get_rank() | |
| world_size = comm.Get_size() | |
| master_addr = None | |
| if rank == 0: | |
| hostname_cmd = ["hostname -I"] | |
| result = subprocess.check_output(hostname_cmd, shell=True) | |
| master_addr = result.decode('utf-8').split()[0] | |
| master_addr = comm.bcast(master_addr, root=0) | |
| # Determine local rank by assuming hostnames are unique | |
| proc_name = MPI.Get_processor_name() | |
| all_procs = comm.allgather(proc_name) | |
| local_rank = sum([i == proc_name for i in all_procs[:rank]]) | |
| os.environ['RANK'] = str(rank) | |
| os.environ['WORLD_SIZE'] = str(world_size) | |
| os.environ['LOCAL_RANK'] = str(local_rank) | |
| os.environ['MASTER_ADDR'] = master_addr | |
| os.environ['MASTER_PORT'] = str(distributed_port) | |
| if verbose: | |
| utils.logger.info( | |
| "Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}". | |
| format(os.environ['RANK'], os.environ['LOCAL_RANK'], os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'], | |
| os.environ['MASTER_PORT'])) | |
| if cdb is not None and cdb.is_initialized(): | |
| assert cdb.get_rank() == rank, "MPI rank {} does not match torch rank {}".format(rank, cdb.get_rank()) | |
| assert cdb.get_world_size() == world_size, "MPI world size {} does not match torch world size {}".format( | |
| world_size, cdb.get_world_size()) | |
| def in_aml(): | |
| # Are we running inside an Azure Machine Learning (AML) environment? | |
| return 'AZUREML_EXPERIMENT_ID' in os.environ | |
| def in_aws_sm(): | |
| # Are we running inside an AWS SageMaker environment? | |
| return 'SM_TRAINING_ENV' in os.environ | |
| def in_dlts(): | |
| # Are we running on a DLTS cluster? | |
| return 'DLTS_JOB_ID' in os.environ | |
| def patch_aml_env_for_torch_nccl_backend(master_port=6105, verbose=True): | |
| """Helper routine to get and set environment variables. | |
| This is adapted from Azure ML's documentation available from: | |
| https://azure.github.io/azureml-web/docs/cheatsheet/distributed-training/#environment-variables-from-openmpi | |
| """ | |
| os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"] | |
| os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"] | |
| single_node = int(os.environ["OMPI_COMM_WORLD_LOCAL_SIZE"]) == int(os.environ["WORLD_SIZE"]) | |
| if not single_node: | |
| master_node_params = os.environ["AZ_BATCH_MASTER_NODE"].split(":") | |
| os.environ["MASTER_ADDR"] = master_node_params[0] | |
| # Do not overwrite master port with that defined in AZ_BATCH_MASTER_NODE | |
| if "MASTER_PORT" not in os.environ: | |
| os.environ["MASTER_PORT"] = str(master_port) | |
| else: | |
| os.environ["MASTER_ADDR"] = os.environ["AZ_BATCHAI_MPI_MASTER_NODE"] | |
| os.environ["MASTER_PORT"] = DEFAULT_AML_MASTER_PORT | |
| if verbose: | |
| utils.logger.info("NCCL_SOCKET_IFNAME original value = {}".format(os.environ["NCCL_SOCKET_IFNAME"])) | |
| os.environ["NCCL_SOCKET_IFNAME"] = DEFAULT_AML_NCCL_SOCKET_IFNAME | |
| os.environ['LOCAL_RANK'] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"] | |
| if verbose: | |
| utils.logger.info( | |
| "Discovered AzureML settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}" | |
| .format(os.environ['RANK'], os.environ['LOCAL_RANK'], os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'], | |
| os.environ['MASTER_PORT'])) | |
| def patch_aws_sm_env_for_torch_nccl_backend(verbose=True): | |
| """Helper routine to get and set environment variables when running inside an AWS SageMaker environment. | |
| """ | |
| os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"] | |
| os.environ['LOCAL_RANK'] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"] | |
| os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"] | |
| if verbose: | |
| utils.logger.info( | |
| "Discovered AWS SageMaker settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}" | |
| .format(os.environ['RANK'], os.environ['LOCAL_RANK'], os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'], | |
| os.environ['MASTER_PORT'])) | |