peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/metaestimators.py
""" | |
The :mod:`sklearn.utils.metaestimators` module includes utilities for meta-estimators. | |
""" | |
# Author: Joel Nothman | |
# Andreas Mueller | |
# License: BSD | |
from abc import ABCMeta, abstractmethod | |
from contextlib import suppress | |
from typing import Any, List | |
import numpy as np | |
from ..base import BaseEstimator | |
from ..utils import _safe_indexing | |
from ..utils._tags import _safe_tags | |
from ._available_if import available_if | |
__all__ = ["available_if"] | |
class _BaseComposition(BaseEstimator, metaclass=ABCMeta): | |
"""Handles parameter management for classifiers composed of named estimators.""" | |
steps: List[Any] | |
def __init__(self): | |
pass | |
def _get_params(self, attr, deep=True): | |
out = super().get_params(deep=deep) | |
if not deep: | |
return out | |
estimators = getattr(self, attr) | |
try: | |
out.update(estimators) | |
except (TypeError, ValueError): | |
# Ignore TypeError for cases where estimators is not a list of | |
# (name, estimator) and ignore ValueError when the list is not | |
# formatted correctly. This is to prevent errors when calling | |
# `set_params`. `BaseEstimator.set_params` calls `get_params` which | |
# can error for invalid values for `estimators`. | |
return out | |
for name, estimator in estimators: | |
if hasattr(estimator, "get_params"): | |
for key, value in estimator.get_params(deep=True).items(): | |
out["%s__%s" % (name, key)] = value | |
return out | |
def _set_params(self, attr, **params): | |
# Ensure strict ordering of parameter setting: | |
# 1. All steps | |
if attr in params: | |
setattr(self, attr, params.pop(attr)) | |
# 2. Replace items with estimators in params | |
items = getattr(self, attr) | |
if isinstance(items, list) and items: | |
# Get item names used to identify valid names in params | |
# `zip` raises a TypeError when `items` does not contains | |
# elements of length 2 | |
with suppress(TypeError): | |
item_names, _ = zip(*items) | |
for name in list(params.keys()): | |
if "__" not in name and name in item_names: | |
self._replace_estimator(attr, name, params.pop(name)) | |
# 3. Step parameters and other initialisation arguments | |
super().set_params(**params) | |
return self | |
def _replace_estimator(self, attr, name, new_val): | |
# assumes `name` is a valid estimator name | |
new_estimators = list(getattr(self, attr)) | |
for i, (estimator_name, _) in enumerate(new_estimators): | |
if estimator_name == name: | |
new_estimators[i] = (name, new_val) | |
break | |
setattr(self, attr, new_estimators) | |
def _validate_names(self, names): | |
if len(set(names)) != len(names): | |
raise ValueError("Names provided are not unique: {0!r}".format(list(names))) | |
invalid_names = set(names).intersection(self.get_params(deep=False)) | |
if invalid_names: | |
raise ValueError( | |
"Estimator names conflict with constructor arguments: {0!r}".format( | |
sorted(invalid_names) | |
) | |
) | |
invalid_names = [name for name in names if "__" in name] | |
if invalid_names: | |
raise ValueError( | |
"Estimator names must not contain __: got {0!r}".format(invalid_names) | |
) | |
def _safe_split(estimator, X, y, indices, train_indices=None): | |
"""Create subset of dataset and properly handle kernels. | |
Slice X, y according to indices for cross-validation, but take care of | |
precomputed kernel-matrices or pairwise affinities / distances. | |
If ``estimator._pairwise is True``, X needs to be square and | |
we slice rows and columns. If ``train_indices`` is not None, | |
we slice rows using ``indices`` (assumed the test set) and columns | |
using ``train_indices``, indicating the training set. | |
Labels y will always be indexed only along the first axis. | |
Parameters | |
---------- | |
estimator : object | |
Estimator to determine whether we should slice only rows or rows and | |
columns. | |
X : array-like, sparse matrix or iterable | |
Data to be indexed. If ``estimator._pairwise is True``, | |
this needs to be a square array-like or sparse matrix. | |
y : array-like, sparse matrix or iterable | |
Targets to be indexed. | |
indices : array of int | |
Rows to select from X and y. | |
If ``estimator._pairwise is True`` and ``train_indices is None`` | |
then ``indices`` will also be used to slice columns. | |
train_indices : array of int or None, default=None | |
If ``estimator._pairwise is True`` and ``train_indices is not None``, | |
then ``train_indices`` will be use to slice the columns of X. | |
Returns | |
------- | |
X_subset : array-like, sparse matrix or list | |
Indexed data. | |
y_subset : array-like, sparse matrix or list | |
Indexed targets. | |
""" | |
if _safe_tags(estimator, key="pairwise"): | |
if not hasattr(X, "shape"): | |
raise ValueError( | |
"Precomputed kernels or affinity matrices have " | |
"to be passed as arrays or sparse matrices." | |
) | |
# X is a precomputed square kernel matrix | |
if X.shape[0] != X.shape[1]: | |
raise ValueError("X should be a square kernel matrix") | |
if train_indices is None: | |
X_subset = X[np.ix_(indices, indices)] | |
else: | |
X_subset = X[np.ix_(indices, train_indices)] | |
else: | |
X_subset = _safe_indexing(X, indices) | |
if y is not None: | |
y_subset = _safe_indexing(y, indices) | |
else: | |
y_subset = None | |
return X_subset, y_subset | |