peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/multiclass.py
""" | |
The :mod:`sklearn.utils.multiclass` module includes utilities to handle | |
multiclass/multioutput target in classifiers. | |
""" | |
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi | |
# | |
# License: BSD 3 clause | |
import warnings | |
from collections.abc import Sequence | |
from itertools import chain | |
import numpy as np | |
from scipy.sparse import issparse | |
from ..utils._array_api import get_namespace | |
from ..utils.fixes import VisibleDeprecationWarning | |
from .validation import _assert_all_finite, check_array | |
def _unique_multiclass(y): | |
xp, is_array_api_compliant = get_namespace(y) | |
if hasattr(y, "__array__") or is_array_api_compliant: | |
return xp.unique_values(xp.asarray(y)) | |
else: | |
return set(y) | |
def _unique_indicator(y): | |
xp, _ = get_namespace(y) | |
return xp.arange( | |
check_array(y, input_name="y", accept_sparse=["csr", "csc", "coo"]).shape[1] | |
) | |
_FN_UNIQUE_LABELS = { | |
"binary": _unique_multiclass, | |
"multiclass": _unique_multiclass, | |
"multilabel-indicator": _unique_indicator, | |
} | |
def unique_labels(*ys): | |
"""Extract an ordered array of unique labels. | |
We don't allow: | |
- mix of multilabel and multiclass (single label) targets | |
- mix of label indicator matrix and anything else, | |
because there are no explicit labels) | |
- mix of label indicator matrices of different sizes | |
- mix of string and integer labels | |
At the moment, we also don't allow "multiclass-multioutput" input type. | |
Parameters | |
---------- | |
*ys : array-likes | |
Label values. | |
Returns | |
------- | |
out : ndarray of shape (n_unique_labels,) | |
An ordered array of unique labels. | |
Examples | |
-------- | |
>>> from sklearn.utils.multiclass import unique_labels | |
>>> unique_labels([3, 5, 5, 5, 7, 7]) | |
array([3, 5, 7]) | |
>>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) | |
array([1, 2, 3, 4]) | |
>>> unique_labels([1, 2, 10], [5, 11]) | |
array([ 1, 2, 5, 10, 11]) | |
""" | |
xp, is_array_api_compliant = get_namespace(*ys) | |
if not ys: | |
raise ValueError("No argument has been passed.") | |
# Check that we don't mix label format | |
ys_types = set(type_of_target(x) for x in ys) | |
if ys_types == {"binary", "multiclass"}: | |
ys_types = {"multiclass"} | |
if len(ys_types) > 1: | |
raise ValueError("Mix type of y not allowed, got types %s" % ys_types) | |
label_type = ys_types.pop() | |
# Check consistency for the indicator format | |
if ( | |
label_type == "multilabel-indicator" | |
and len( | |
set( | |
check_array(y, accept_sparse=["csr", "csc", "coo"]).shape[1] for y in ys | |
) | |
) | |
> 1 | |
): | |
raise ValueError( | |
"Multi-label binary indicator input with different numbers of labels" | |
) | |
# Get the unique set of labels | |
_unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) | |
if not _unique_labels: | |
raise ValueError("Unknown label type: %s" % repr(ys)) | |
if is_array_api_compliant: | |
# array_api does not allow for mixed dtypes | |
unique_ys = xp.concat([_unique_labels(y) for y in ys]) | |
return xp.unique_values(unique_ys) | |
ys_labels = set(chain.from_iterable((i for i in _unique_labels(y)) for y in ys)) | |
# Check that we don't mix string type with number type | |
if len(set(isinstance(label, str) for label in ys_labels)) > 1: | |
raise ValueError("Mix of label input types (string and number)") | |
return xp.asarray(sorted(ys_labels)) | |
def _is_integral_float(y): | |
xp, is_array_api_compliant = get_namespace(y) | |
return xp.isdtype(y.dtype, "real floating") and bool( | |
xp.all(xp.astype((xp.astype(y, xp.int64)), y.dtype) == y) | |
) | |
def is_multilabel(y): | |
"""Check if ``y`` is in a multilabel format. | |
Parameters | |
---------- | |
y : ndarray of shape (n_samples,) | |
Target values. | |
Returns | |
------- | |
out : bool | |
Return ``True``, if ``y`` is in a multilabel format, else ```False``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.utils.multiclass import is_multilabel | |
>>> is_multilabel([0, 1, 0, 1]) | |
False | |
>>> is_multilabel([[1], [0, 2], []]) | |
False | |
>>> is_multilabel(np.array([[1, 0], [0, 0]])) | |
True | |
>>> is_multilabel(np.array([[1], [0], [0]])) | |
False | |
>>> is_multilabel(np.array([[1, 0, 0]])) | |
True | |
""" | |
xp, is_array_api_compliant = get_namespace(y) | |
if hasattr(y, "__array__") or isinstance(y, Sequence) or is_array_api_compliant: | |
# DeprecationWarning will be replaced by ValueError, see NEP 34 | |
# https://numpy.org/neps/nep-0034-infer-dtype-is-object.html | |
check_y_kwargs = dict( | |
accept_sparse=True, | |
allow_nd=True, | |
force_all_finite=False, | |
ensure_2d=False, | |
ensure_min_samples=0, | |
ensure_min_features=0, | |
) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", VisibleDeprecationWarning) | |
try: | |
y = check_array(y, dtype=None, **check_y_kwargs) | |
except (VisibleDeprecationWarning, ValueError) as e: | |
if str(e).startswith("Complex data not supported"): | |
raise | |
# dtype=object should be provided explicitly for ragged arrays, | |
# see NEP 34 | |
y = check_array(y, dtype=object, **check_y_kwargs) | |
if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): | |
return False | |
if issparse(y): | |
if y.format in ("dok", "lil"): | |
y = y.tocsr() | |
labels = xp.unique_values(y.data) | |
return ( | |
len(y.data) == 0 | |
or (labels.size == 1 or (labels.size == 2) and (0 in labels)) | |
and (y.dtype.kind in "biu" or _is_integral_float(labels)) # bool, int, uint | |
) | |
else: | |
labels = xp.unique_values(y) | |
return labels.shape[0] < 3 and ( | |
xp.isdtype(y.dtype, ("bool", "signed integer", "unsigned integer")) | |
or _is_integral_float(labels) | |
) | |
def check_classification_targets(y): | |
"""Ensure that target y is of a non-regression type. | |
Only the following target types (as defined in type_of_target) are allowed: | |
'binary', 'multiclass', 'multiclass-multioutput', | |
'multilabel-indicator', 'multilabel-sequences' | |
Parameters | |
---------- | |
y : array-like | |
Target values. | |
""" | |
y_type = type_of_target(y, input_name="y") | |
if y_type not in [ | |
"binary", | |
"multiclass", | |
"multiclass-multioutput", | |
"multilabel-indicator", | |
"multilabel-sequences", | |
]: | |
raise ValueError( | |
f"Unknown label type: {y_type}. Maybe you are trying to fit a " | |
"classifier, which expects discrete classes on a " | |
"regression target with continuous values." | |
) | |
def type_of_target(y, input_name=""): | |
"""Determine the type of data indicated by the target. | |
Note that this type is the most specific type that can be inferred. | |
For example: | |
* ``binary`` is more specific but compatible with ``multiclass``. | |
* ``multiclass`` of integers is more specific but compatible with | |
``continuous``. | |
* ``multilabel-indicator`` is more specific but compatible with | |
``multiclass-multioutput``. | |
Parameters | |
---------- | |
y : {array-like, sparse matrix} | |
Target values. If a sparse matrix, `y` is expected to be a | |
CSR/CSC matrix. | |
input_name : str, default="" | |
The data name used to construct the error message. | |
.. versionadded:: 1.1.0 | |
Returns | |
------- | |
target_type : str | |
One of: | |
* 'continuous': `y` is an array-like of floats that are not all | |
integers, and is 1d or a column vector. | |
* 'continuous-multioutput': `y` is a 2d array of floats that are | |
not all integers, and both dimensions are of size > 1. | |
* 'binary': `y` contains <= 2 discrete values and is 1d or a column | |
vector. | |
* 'multiclass': `y` contains more than two discrete values, is not a | |
sequence of sequences, and is 1d or a column vector. | |
* 'multiclass-multioutput': `y` is a 2d array that contains more | |
than two discrete values, is not a sequence of sequences, and both | |
dimensions are of size > 1. | |
* 'multilabel-indicator': `y` is a label indicator matrix, an array | |
of two dimensions with at least two columns, and at most 2 unique | |
values. | |
* 'unknown': `y` is array-like but none of the above, such as a 3d | |
array, sequence of sequences, or an array of non-sequence objects. | |
Examples | |
-------- | |
>>> from sklearn.utils.multiclass import type_of_target | |
>>> import numpy as np | |
>>> type_of_target([0.1, 0.6]) | |
'continuous' | |
>>> type_of_target([1, -1, -1, 1]) | |
'binary' | |
>>> type_of_target(['a', 'b', 'a']) | |
'binary' | |
>>> type_of_target([1.0, 2.0]) | |
'binary' | |
>>> type_of_target([1, 0, 2]) | |
'multiclass' | |
>>> type_of_target([1.0, 0.0, 3.0]) | |
'multiclass' | |
>>> type_of_target(['a', 'b', 'c']) | |
'multiclass' | |
>>> type_of_target(np.array([[1, 2], [3, 1]])) | |
'multiclass-multioutput' | |
>>> type_of_target([[1, 2]]) | |
'multilabel-indicator' | |
>>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) | |
'continuous-multioutput' | |
>>> type_of_target(np.array([[0, 1], [1, 1]])) | |
'multilabel-indicator' | |
""" | |
xp, is_array_api_compliant = get_namespace(y) | |
valid = ( | |
(isinstance(y, Sequence) or issparse(y) or hasattr(y, "__array__")) | |
and not isinstance(y, str) | |
or is_array_api_compliant | |
) | |
if not valid: | |
raise ValueError( | |
"Expected array-like (array or non-string sequence), got %r" % y | |
) | |
sparse_pandas = y.__class__.__name__ in ["SparseSeries", "SparseArray"] | |
if sparse_pandas: | |
raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'") | |
if is_multilabel(y): | |
return "multilabel-indicator" | |
# DeprecationWarning will be replaced by ValueError, see NEP 34 | |
# https://numpy.org/neps/nep-0034-infer-dtype-is-object.html | |
# We therefore catch both deprecation (NumPy < 1.24) warning and | |
# value error (NumPy >= 1.24). | |
check_y_kwargs = dict( | |
accept_sparse=True, | |
allow_nd=True, | |
force_all_finite=False, | |
ensure_2d=False, | |
ensure_min_samples=0, | |
ensure_min_features=0, | |
) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", VisibleDeprecationWarning) | |
if not issparse(y): | |
try: | |
y = check_array(y, dtype=None, **check_y_kwargs) | |
except (VisibleDeprecationWarning, ValueError) as e: | |
if str(e).startswith("Complex data not supported"): | |
raise | |
# dtype=object should be provided explicitly for ragged arrays, | |
# see NEP 34 | |
y = check_array(y, dtype=object, **check_y_kwargs) | |
# The old sequence of sequences format | |
try: | |
first_row = y[[0], :] if issparse(y) else y[0] | |
if ( | |
not hasattr(first_row, "__array__") | |
and isinstance(first_row, Sequence) | |
and not isinstance(first_row, str) | |
): | |
raise ValueError( | |
"You appear to be using a legacy multi-label data" | |
" representation. Sequence of sequences are no" | |
" longer supported; use a binary array or sparse" | |
" matrix instead - the MultiLabelBinarizer" | |
" transformer can convert to this format." | |
) | |
except IndexError: | |
pass | |
# Invalid inputs | |
if y.ndim not in (1, 2): | |
# Number of dimension greater than 2: [[[1, 2]]] | |
return "unknown" | |
if not min(y.shape): | |
# Empty ndarray: []/[[]] | |
if y.ndim == 1: | |
# 1-D empty array: [] | |
return "binary" # [] | |
# 2-D empty array: [[]] | |
return "unknown" | |
if not issparse(y) and y.dtype == object and not isinstance(y.flat[0], str): | |
# [obj_1] and not ["label_1"] | |
return "unknown" | |
# Check if multioutput | |
if y.ndim == 2 and y.shape[1] > 1: | |
suffix = "-multioutput" # [[1, 2], [1, 2]] | |
else: | |
suffix = "" # [1, 2, 3] or [[1], [2], [3]] | |
# Check float and contains non-integer float values | |
if xp.isdtype(y.dtype, "real floating"): | |
# [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] | |
data = y.data if issparse(y) else y | |
if xp.any(data != xp.astype(data, int)): | |
_assert_all_finite(data, input_name=input_name) | |
return "continuous" + suffix | |
# Check multiclass | |
if issparse(first_row): | |
first_row = first_row.data | |
if xp.unique_values(y).shape[0] > 2 or (y.ndim == 2 and len(first_row) > 1): | |
# [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] | |
return "multiclass" + suffix | |
else: | |
return "binary" # [1, 2] or [["a"], ["b"]] | |
def _check_partial_fit_first_call(clf, classes=None): | |
"""Private helper function for factorizing common classes param logic. | |
Estimators that implement the ``partial_fit`` API need to be provided with | |
the list of possible classes at the first call to partial_fit. | |
Subsequent calls to partial_fit should check that ``classes`` is still | |
consistent with a previous value of ``clf.classes_`` when provided. | |
This function returns True if it detects that this was the first call to | |
``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also | |
set on ``clf``. | |
""" | |
if getattr(clf, "classes_", None) is None and classes is None: | |
raise ValueError("classes must be passed on the first call to partial_fit.") | |
elif classes is not None: | |
if getattr(clf, "classes_", None) is not None: | |
if not np.array_equal(clf.classes_, unique_labels(classes)): | |
raise ValueError( | |
"`classes=%r` is not the same as on last call " | |
"to partial_fit, was: %r" % (classes, clf.classes_) | |
) | |
else: | |
# This is the first call to partial_fit | |
clf.classes_ = unique_labels(classes) | |
return True | |
# classes is None and clf.classes_ has already previously been set: | |
# nothing to do | |
return False | |
def class_distribution(y, sample_weight=None): | |
"""Compute class priors from multioutput-multiclass target data. | |
Parameters | |
---------- | |
y : {array-like, sparse matrix} of size (n_samples, n_outputs) | |
The labels for each example. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
Returns | |
------- | |
classes : list of size n_outputs of ndarray of size (n_classes,) | |
List of classes for each column. | |
n_classes : list of int of size n_outputs | |
Number of classes in each column. | |
class_prior : list of size n_outputs of ndarray of size (n_classes,) | |
Class distribution of each column. | |
""" | |
classes = [] | |
n_classes = [] | |
class_prior = [] | |
n_samples, n_outputs = y.shape | |
if sample_weight is not None: | |
sample_weight = np.asarray(sample_weight) | |
if issparse(y): | |
y = y.tocsc() | |
y_nnz = np.diff(y.indptr) | |
for k in range(n_outputs): | |
col_nonzero = y.indices[y.indptr[k] : y.indptr[k + 1]] | |
# separate sample weights for zero and non-zero elements | |
if sample_weight is not None: | |
nz_samp_weight = sample_weight[col_nonzero] | |
zeros_samp_weight_sum = np.sum(sample_weight) - np.sum(nz_samp_weight) | |
else: | |
nz_samp_weight = None | |
zeros_samp_weight_sum = y.shape[0] - y_nnz[k] | |
classes_k, y_k = np.unique( | |
y.data[y.indptr[k] : y.indptr[k + 1]], return_inverse=True | |
) | |
class_prior_k = np.bincount(y_k, weights=nz_samp_weight) | |
# An explicit zero was found, combine its weight with the weight | |
# of the implicit zeros | |
if 0 in classes_k: | |
class_prior_k[classes_k == 0] += zeros_samp_weight_sum | |
# If an there is an implicit zero and it is not in classes and | |
# class_prior, make an entry for it | |
if 0 not in classes_k and y_nnz[k] < y.shape[0]: | |
classes_k = np.insert(classes_k, 0, 0) | |
class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) | |
classes.append(classes_k) | |
n_classes.append(classes_k.shape[0]) | |
class_prior.append(class_prior_k / class_prior_k.sum()) | |
else: | |
for k in range(n_outputs): | |
classes_k, y_k = np.unique(y[:, k], return_inverse=True) | |
classes.append(classes_k) | |
n_classes.append(classes_k.shape[0]) | |
class_prior_k = np.bincount(y_k, weights=sample_weight) | |
class_prior.append(class_prior_k / class_prior_k.sum()) | |
return (classes, n_classes, class_prior) | |
def _ovr_decision_function(predictions, confidences, n_classes): | |
"""Compute a continuous, tie-breaking OvR decision function from OvO. | |
It is important to include a continuous value, not only votes, | |
to make computing AUC or calibration meaningful. | |
Parameters | |
---------- | |
predictions : array-like of shape (n_samples, n_classifiers) | |
Predicted classes for each binary classifier. | |
confidences : array-like of shape (n_samples, n_classifiers) | |
Decision functions or predicted probabilities for positive class | |
for each binary classifier. | |
n_classes : int | |
Number of classes. n_classifiers must be | |
``n_classes * (n_classes - 1 ) / 2``. | |
""" | |
n_samples = predictions.shape[0] | |
votes = np.zeros((n_samples, n_classes)) | |
sum_of_confidences = np.zeros((n_samples, n_classes)) | |
k = 0 | |
for i in range(n_classes): | |
for j in range(i + 1, n_classes): | |
sum_of_confidences[:, i] -= confidences[:, k] | |
sum_of_confidences[:, j] += confidences[:, k] | |
votes[predictions[:, k] == 0, i] += 1 | |
votes[predictions[:, k] == 1, j] += 1 | |
k += 1 | |
# Monotonically transform the sum_of_confidences to (-1/3, 1/3) | |
# and add it with votes. The monotonic transformation is | |
# f: x -> x / (3 * (|x| + 1)), it uses 1/3 instead of 1/2 | |
# to ensure that we won't reach the limits and change vote order. | |
# The motivation is to use confidence levels as a way to break ties in | |
# the votes without switching any decision made based on a difference | |
# of 1 vote. | |
transformed_confidences = sum_of_confidences / ( | |
3 * (np.abs(sum_of_confidences) + 1) | |
) | |
return votes + transformed_confidences | |